Objective Chronic stroke patients with severe hand weakness, respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine-interface training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double blind sham-controlled design proof of concept study. Methods 32 chronic stroke patients with severe hand weakness, were randomly assigned to two matched groups and participated in 17.8 ± 1.4 days of training rewarding desynchronization of ipsilesional oscillatory sensorimotor rhythms (SMR) with contingent online movements of hand and arm orthoses (experimental group , n=16). In the control group (sham group, n=16) movements of the orthoses occurred randomly. Both groups received identical behavioral physiotherapy immediately following BMI training or the control intervention. Upper limb motor function scores, electromyography from arm and hand muscles, placebo-expectancy effects and functional magnetic resonance imaging (MRI) blood oxygenation level dependent activity were assessed before and after intervention. Results A significant group × time interaction in upper limb Fugl-Meyer motor (cFMA) scores was found. cFMA scores improved more in the experimental than in the control group, presenting a significant improvement of cFMA scores (3.41±0.563 points difference, p=0.018) reflecting a clinically meaningful change from no activity to some in paretic muscles. cFMA improvements in the experimental group correlated with changes in functional MRI laterality index and with paretic hand electromyography activity. Placebo-expectancy scores were comparable for both groups. Interpretation The addition of BMI training to behaviorally oriented physiotherapy can be used to induce functional improvements in motor function in chronic stroke patients without residual finger movements and may open a new door in stroke neurorehabilitation.
Background. Brain-machine interfaces (BMIs) have been recently proposed as a new tool to induce functional recovery in stroke patients. Objective. Here we evaluated long-term effects of BMI training and physiotherapy in motor function of severely paralyzed chronic stroke patients 6 months after intervention. Methods. A total of 30 chronic stroke patients with severe hand paresis from our previous study were invited, and 28 underwent follow-up assessments. BMI training included voluntary desynchronization of ipsilesional EEG-sensorimotor rhythms triggering paretic upper-limb movements via robotic orthoses (experimental group, n = 16) or random orthoses movements (sham group, n = 12). Both groups received identical physiotherapy following BMI sessions and a home-based training program after intervention. Upper-limb motor assessment scores, electromyography (EMG), and functional magnetic resonance imaging (fMRI) were assessed before (Pre), immediately after (Post1), and 6 months after intervention (Post2). Results. The experimental group presented with upper-limb Fugl-Meyer assessment (cFMA) scores significantly higher in Post2 (13.44 ± 1.96) as compared with the Pre session (11.16 ± 1.73; P = .015) and no significant changes between Post1 and Post2 sessions. The Sham group showed no significant changes on cFMA scores. Ashworth scores and EMG activity in both groups increased from Post1 to Post2. Moreover, fMRI-BOLD laterality index showed no significant difference from Pre or Post1 to Post2 sessions. Conclusions. BMI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis and represents a promising strategy in severe stroke neurorehabilitation.
Movement-related slow cortical potentials (SCPs) are proposed as reliable and immediate indicators of cortical reorganization in motor learning. SCP amplitude and latency have been reported as markers for the brain's computational effort, attention and movement planning. SCPs have been used as an EEG signature of motor control and as a main feature in Brain-Machine-Interfaces (BMIs). Some reports suggest SCPs are modified following stroke. In this study, we investigated movement-related SCPs in severe chronic stroke patients with no residual paretic hand movements preceding and during paretic (when they try to move) and healthy hand movements. The aim was to identify SCP signatures related to cortex integrity and complete paralysis due to stroke in the chronic stage. Twenty severely impaired (no residual finger extension) chronic stoke patients, of whom ten presented subcortical and ten cortical and subcortical lesions, underwent EEG and EMG recordings during a cue triggered hand movement (open/close) paradigm. SCP onset appeared and peaked significantly earlier during paretic hand movements than during healthy hand movements. Amplitudes were significantly larger over the midline (Cz, Fz) for paretic hand movements while contralateral (C4, F4) and midline (Cz, Fz) amplitudes were significantly larger than ipsilateral activity for healthy hand movements. Dividing the participants into subcortical only and mixed lesioned patient groups, no significant differences observed in SCP amplitude and latency between groups. This suggests lesions in the thalamocortical loop as the main factor in SCP changes after stroke. Furthermore, we demonstrated how, after long-term complete paralysis, post-stroke intention to move a paralyzed hand resulted in longer and larger SCPs originating in the frontal areas. These results suggest SCP are a valuable feature that should be incorporated in the design of new neurofeedback strategies for motor neurorehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.