In recent years, due to the extensive use of the Internet, the number of networked computers has been increasing in our daily lives. Weaknesses of the servers enable hackers to intrude on computers by using not only known but also new attack-types, which are more sophisticated and harder to detect. To protect the computers from them, Intrusion Detection System (IDS), which is trained with some machine learning techniques by using a pre-collected dataset, is one of the most preferred protection mechanisms. The used datasets were collected during a limited period in some specific networks and generally don't contain up-to-date data. Additionally, they are imbalanced and cannot hold sufficient data for all types of attacks. These imbalanced and outdated datasets decrease the efficiency of current IDSs, especially for rarely encountered attack types. In this paper, we propose six machine-learning-based IDSs by using K Nearest Neighbor, Random Forest, Gradient Boosting, Adaboost, Decision Tree, and Linear Discriminant Analysis algorithms. To implement a more realistic IDS, an up-to-date security dataset, CSE-CIC-IDS2018, is used instead of older and mostly worked datasets. The selected dataset is also imbalanced. Therefore, to increase the efficiency of the system depending on attack types and to decrease missed intrusions and false alarms, the imbalance ratio is reduced by using a synthetic data generation model called Synthetic Minority Oversampling TEchnique (SMOTE). Data generation is performed for minor classes, and their numbers are increased to the average data size via this technique. Experimental results demonstrated that the proposed approach considerably increases the detection rate for rarely encountered intrusions.
Wireless Sensor Network (WSN) is a large scale network with from dozens to thousands tiny devices. Using fields of WSNs (military, health, smart home e.g.) has a large-scale and its usage areas increasing day by day. Secure issue of WSNs is an important research area and applications of WSN have some big security deficiencies. Intrusion Detection System is a second-line of the security mechanism for networks, and it is very important to integrity, confidentiality and availability. Intrusion Detection in WSNs is somewhat different from wired and non-energy constraint wireless network because WSN has some constraints influencing cyber security approaches and attack types. This paper is a survey describing attack types of WSNs intrusion detection approaches being against to this attack types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.