The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population.
As a conclusion, the relation between gastroesophageal reflux and delayed gastric emptying cannot be ignored. Our results support delayed gastric emptying to be a pathogenetic factor in gastroesophageal reflux in infants and children.
Expansions of the polyglutamine (polyQ) domain (≥34) in Ataxin-2 (ATXN2) are the primary cause of spinocerebellar ataxia type 2 (SCA2). Recent studies reported that intermediate-length (27–33) expansions increase the risk of Amyotrophic Lateral Sclerosis (ALS) in 1–4% of cases in diverse populations. This study investigates the Turkish population with respect to ALS risk, genotyping 158 sporadic, 78 familial patients and 420 neurologically healthy controls. We re-assessed the effect of ATXN2 expansions and extended the analysis for the first time to cover the ATXN2 locus with 18 Single Nucleotide Polymorphisms (SNPs) and their haplotypes. In accordance with other studies, our results confirmed that 31–32 polyQ repeats in the ATXN2 gene are associated with risk of developing ALS in 1.7% of the Turkish ALS cohort (p = 0.0172). Additionally, a significant association of a 136 kb haplotype block across the ATXN2 and SH2B3 genes was found in 19.4% of a subset of our ALS cohort and in 10.1% of the controls (p = 0.0057, OR: 2.23). ATXN2 and SH2B3 encode proteins that both interact with growth receptor tyrosine kinases. Our novel observations suggest that genotyping of SNPs at this locus may be useful for the study of ALS risk in a high percentage of individuals and that ATXN2 and SH2B3 variants may interact in modulating the disease pathway.
NUCLEAR MEDICINE AND MOLECULAR IMAGINGF-FDG PET-CT imaging, following a diagnostic contrast-enhanced CT (CE-CT) performed within the last month, were included in our study. A total of 129 PET-CT images, and all radiologic, clinical, and pathological records of these patients were retrospectively reviewed.
RESULTSIn total, 137 hypermetabolic extranodal infiltration sites were detected by 18 F-FDG PET-CT in 62 of 110 patients. There were no positive findings by CE-CT that reflected organ involvement in 40 of 137 18 F-FDG-positive sites. The κ statistics revealed fair agreement between PET-CT and CE-CT for the detection of extranodal involvement (κ=0.60). The organs showing a disagreement between the two modalities were the spleen, bone marrow, bone, and thyroid and prostate glands. In all lesions that were negative at CE-CT, there was a diffuse 18 F-FDG uptake pattern in the PET-CT images. The frequency of extranodal involvement was 51% and 58% in Hodgkin and non-Hodgkin lymphoma patients, respectively. There was a high positive correlation between the maximum standardized uptake values of the highest 18 F-FDG-accumulating lymph nodes and extranodal sites (r=0.67) in patients with nodal and extranodal involvement. CONCLUSION 18 F-FDG PET-CT is a more effective technique than CE-CT for the evaluation of extranodal involvement in Hodgkin and non-Hodgkin lymphoma patients. PET-CT has a significant advantage for the diagnosis of diffusely infiltrating organs without mass lesions or contrast enhancement compared to CE-CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.