In the present study the Mo(0) and W(0) complexes [M(PNP)(CO)3] as well as seven-coordinate cationic hydridocarbonyl Mo(II) and W(II) complexes of the type [M(PNP)(CO)3H]+, featuring PNP pincer ligands based on 2,6-diaminopyridine, have been prepared and fully characterized. The synthesis of Mo(0) complexes [Mo(PNP)(CO)3] was accomplished by treatment of [Mo(CO)3(CH3CN)3] with the respective PNP ligands. The analogous W(0) complexes were prepared by reduction of the bromocarbonyl complexes [W(PNP)(CO)3Br]+ with NaHg. These intermediates were obtained from the known dinuclear complex [W(CO)4(μ-Br)Br]2, prepared in situ from W(CO)6 and stoichiometric amounts of Br2. Addition of HBF4 to [M(PNP)(CO)3] resulted in clean protonation at the molybdenum and tungsten centers to generate the Mo(II) and W(II) hydride complexes [M(PNP)(CO)3H]+. The protonation is fully reversible, and upon addition of NEt3 as base the Mo(0) and W(0) complexes [M(PNP)(CO)3] are regenerated quantitatively. All heptacoordinate complexes exhibit fluxional behavior in solution. The mechanism of the dynamic process of the hydrido carbonyl complexes was investigated by means of DFT calculations, revealing that it occurs in a single step. The structures of representative complexes were determined by X-ray single-crystal analyses.
In the present study a series of six-coordinate neutral 16e halocarbonyl Mo(ii) complexes of the type [Mo(PNP(Me)-iPr)(CO)X2] (X = I, Br, Cl), featuring the PNP pincer ligand N,N'-bis(diisopropylphosphino)-N,N'-dimethyl-2,6-diaminopyridine (PNP(Me)-iPr), were prepared and fully characterized. The synthesis of these complexes was accomplished by different methodologies depending on the halide ligands. For X = I and Br, [Mo(PNP(Me)-iPr)(CO)I2] and [Mo(PNP(Me)-iPr)(CO)Br2] were obtained by reacting [Mo(PNP(Me)-iPr)(CO)3] with stoichiometric amounts of I2 and Br2, respectively. In the case of X = Cl, [Mo(PNP(Me)-iPr)(CO)Cl2] was afforded by the reaction of [Mo(CO)4(μ-Cl)Cl]2 with 1 equiv. of PNP(Me)-iPr. The equivalent procedure also worked for X = Br. The modification of the 2,6-diaminopyridine scaffold by introducing NMe instead of NH spacers between the aromatic pyridine ring and the phosphine moieties changed the steric properties of the PNP-iPr ligand significantly. While in the present case exclusively neutral six-coordinate complexes of the type [Mo(PNP(Me)-iPr)(CO)X2] were obtained, with the parent PNP-iPr ligand, i.e. featuring NH spacers, cationic seven-coordinate complexes of the type [Mo(PNP-iPr)(CO)3X]X were afforded. Upon treatment of [Mo(PNP(Me)-iPr)(CO)X2] (X = Br, Cl) with Ag(+) in CH3CN, the cationic complexes [Mo(PNP(Me)-iPr)(CO)(CH3CN)X](+) were formed. Halide abstraction from [Mo(PNP(Me)-iPr)(CO)Cl2] in THF-CH2Cl2 afforded [Mo(PNP(Me)-iPr)(CO)(THF)Cl](+). In keeping with the facile synthesis of monocationic complexes preliminary ESI-MS and DFT/B3LYP studies revealed that one halide ligand in complexes [Mo(PNP(Me)-iPr)(CO)X2] is labile forming cationic fragments [Mo(PNP(Me)-iPr)(CO)X](+) which react with molecular oxygen in parallel pathways to yield mono and dioxo Mo(iv) and Mo(vi) species. Structures of representative complexes were determined by X-ray single crystal analyses.
A series of cationic palladium allyl complexes of the type [Pd(η3-allyl)(κ2(E,N)-EN-chelate)]+ containing several heterodifunctional EN (E = P, O, S, Se) ligands based on N-(2-pyridinyl)aminophosphines and oxo, thio, and seleno derivatives thereof are prepared. These complexes are studied by one- and two-dimensional NMR techniques together with X-ray and DFT calculations. Variable-temperature and phase-sensitive 1H,1H NOESY NMR measurements reveal both allyl and EN ligand dynamics. In the case of palladium, PN complexes' η3 to η1 isomerization takes place by opening the η3-allyl group selectively at the trans position with respect to the phosphorus center, while for EN (E = O, S, Se) complexes an “apparent” allyl rotation is observed proceeding with Pd–E and Pd–N bond breaking. DFT calculations indicate that both isomerization processes are solvent assisted, in agreement with the NMR data. In addition, the use of the new palladium allyl complexes has been examined as catalysts for Suzuki–Miyaura coupling of various aryl bromides and arylboronic acids. [Pd(η3-CHPhCHCH2)(ON-Ph)]+, bearing an η3-cinnamyl ligand, is one of the most efficient catalysts, converting aryl bromides and arylboronic acids at 80 °C with a catalyst loading of 0.1 mol % quantitatively into the expected biaryl products.
The coordination properties of the EN ligands N-(2-pyridinyl)amino-diphenylphosphine sulfide, N-(2-pyridinyl)amino-diisopropylphosphine sulfide, N-(2-pyridinyl)amino-diphenylphosphine selenide, N-(2-pyridinyl)amino-diisopropylphosphine selenide towards copper(I) precursors CuX (X = Br, I), [Cu(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), and [Cu(CH(3)CN)(4)]PF(6) were studied. Treatment of CuX with EN ligands resulted in the formation of tricoordinate complexes of the type [Cu(κ(2)(E,N)-EN)X]. The reaction of [Cu(IPr)Cl] with EN ligands, followed by halide abstraction with AgSbF(6), afforded cationic tricoordinate complexes [Cu(κ(2)(S,N)-EN)(IPr)](+), while the reaction of [Cu(CH(3)CN)(4)](+) with two equivalents of EN ligands yielded tetrahedral complexes [Cu(κ(2)(E,N)-EN)(2)](+). Halide removal from [Cu(κ(2)(S,N)-SN)I] with silver salts in the presence of L = CH(3)CN and CNtBu afforded dinuclear complexes of the type [Cu(κ(2)(S,N),μ(S)-SN)(L)](2)(2+) containing bridging SN ligands. With the terminal alkynes HC≡CC(6)H(4)Me and HC≡CC(6)H(4)OMe, complexes of the formula [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)Me)](+) and [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)OMe)](+) were obtained. The mononuclear nature of these compounds was supported by DFT calculations. Most complexes were also characterized by X-ray crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.