This paper presents a hybrid methodology for Turkish sentiment analysis, which combines the lexicon-based and machine learning (ML)-based approaches. On the lexicon-based side, we use a sentiment dictionary that is extended with a synonyms lexicon. Besides this, we tackle the classification problem with three supervised classifiers, naive Bayes, support vector machines, and J48, on the ML side. Our hybrid methodology combines these two approaches by generating a new lexicon-based value according to our feature generation algorithm and feeds it as one of the features to machine learning classifiers. Despite the linguistic challenges caused by the morphological structure of Turkish, the experimental results show that it improves the accuracy by 7% on average.
ÖzTürkiye Elektrik Piyasası geçmişten günümüze kadar birçok süreç değişikliğine uğramıştır. Bu değişimler sonucunda elektrik piyasası saatlik oluşan enerjiyi bu alandaki paydaşlarına, serbest tüketici sözleşmelerine ilaveten ertesi gün için enerji satış ve alış yapma durumu sağlayarak, paydaşların kendi durumlarını stabil durumda tutmaları adına takip ettiği bir yöntem kurulmuştur. Bu sisteme Gün Öncesi Piyasası (GÖP) denilmektedir ve burada belirlenen fiyata da Piyasa Takas Fiyatı (PTF) denilmektedir. Bu çalışmada yapay zekânın alt dallarından biri olan yapay sinir ağları ile piyasa takas fiyatı tahmini yapılmıştır. Projede bağımsız parametre olarak 10 adet özellik kullanılmıştır. Sinir ağlarında farklı modeller oluşturulmuş ve en iyi sonuç araştırılmıştır. Farklı modellerde farklı ara katmanlar kullanılmıştır. Doğruluk kıstası olarak da MPE kullanılmış ve 0.10 değeri elde edilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.