Even though nicotine has been shown to modulate mRNA expression of a variety of genes, a comprehensive high-throughput study of the effects of nicotine on the tissue-specific gene expression profiles has been lacking in the literature. In this study, cDNA microarrays containing 1117 genes and ESTs were used to assess the transcriptional response to chronic nicotine treatment in rat, based on four brain regions, i.e. prefrontal cortex (PFC), nucleus accumbens (NAs), ventral tegmental area (VTA), and amygdala (AMYG). On the basis of a non-parametric resampling method, an index (called jackknifed reliability index, JRI) was proposed, and employed to determine the inherent measurement error across multiple arrays used in this study. Upon removal of the outliers, the mean correlation coefficient between duplicate measurements increased to 0.978±0.0035 from 0.941 ±0.045. Results from principal component analysis and pairwise correlations suggested that brain regions studied were highly similar in terms of their absolute expression levels, but exhibited divergent transcriptional responses to chronic nicotine administration. For example, PFC and NAs were significantly more similar to each other (r=0.7; P<10 −14 ) than to either VTA or AMYG. Furthermore, we confirmed our microarray results for two representative genes, i.e. the weak inward rectifier K + channel (TWIK-1), and phosphate and tensin homolog (PTEN) by using real-time quantitative RT-PCR technique. Finally, a number of genes, involved in MAPK, phosphatidylinositol, and EGFR signaling pathways, were identified and proposed as possible targets in response to nicotine administration.
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) highlight crucial steps during embryogenesis and tumorigenesis. Induction of dramatic changes in gene expression and cell features is reflected by modulation of Cdh1 (E-cadherin) expression. We show that Cdh1 activity during MET is governed by two enhancers at +7.8 kb and at +11.5 kb within intron 2 that are activated by binding of Grhl3 and Hnf4α, respectively. Recruitment of Grhl3 and Hnf4α to the enhancers is crucial for activating Cdh1 and accomplishing MET in non-tumorigenic mouse mammary gland cells (NMuMG). Moreover, the two enhancers cooperate via Grhl3 and Hnf4α binding, induction of DNA-looping and clustering at the promoter to orchestrate E-cadherin re-expression. Our results provide novel insights into the cellular mechanisms whereby cells respond to MET signals and re-establish an epithelial phenotype by enhancer cooperativity. A general importance of our findings including MET-mediated colonization of metastasizing tumor cells is suggested.
Here we report the synthesis of nanoparticles based on a conjugated oligomer which is synthesized through Heckcoupling of divinylfluorene and dibromobenzothiodiazole monomers. These water dispersible nanoparticles emit in the region of red tailing to the near-infrared region of the spectrum with high fluorescent quantum yield and brightness. The nanoparticles were found to be stable in water for a prolonged time without forming any aggregates and could carry camptothecin, an anticancer drug with high loading efficiency. MTT cell viability studies performed with breast cancer cell lines showed that halfmaximal inhibitory concentration (IC 50 ) values of nanoparticles for MCF7 and MDA-MB-231 were 44.7 μM and 24.8 μM, respectively. In order to further decrease the cytotoxicity and increase the stability of nanoparticles, amine groups were disguised by capping with cucurbit [7]uril (CB7). Drug release studies showed that drugs were released at low pH (at 5.0) faster than physiological pH (7.4) confirming the pH-responsive nature of the nanoparticles. On the other hand, CB7-capped drug-loaded nanoparticles regulated the release rate by providing slower release at pH 7.4 than the nanoparticles in the absence of CB7s. IC 50 values for camptothecin in the presence of nanoparticles with or without CB7 were significantly reduced in MCF7 and MDA-MB-231 cells. ■ INTRODUCTIONConjugated polymer nanoparticles (CPNs) are highly appealing for various advanced applications such as in vivo imaging, cell labeling, and delivery of therapeutic agents, as well as nanophotonics, owing to their high quantum yields and molar absorptivity, tunable properties, easy functionalization, photostability, and so forth. 1−7 To date, the use of CPNs has been demonstrated successfully in cell imaging, oxygen sensing, drug delivery, and nucleic acid delivery. 8−16 When these nanostructures are judiciously designed, they can be utilized in theranostic applications by combining more than one functionality to deliver therapeutic and imaging agents. 17−21 For the controlled delivery of therapeutic agents to the targets the nanoparticles could also include responsive groups that will respond to stimuli such as pH, oxidation−reduction, and enzymes. However, in the literature, examples are scarce regarding the multifunctional conjugated polymer nanoparticles (CPNs) and even less with conjugated oligomer-based nanoparticles (CONs). 22,23 Recently, Schenning et al. compared the capabilities of conjugated polymer nanoparticles to selfassembled oligomer-based nanoparticles in terms of their fluorescent quantum yields, stabilities, molar absorptivity, guest-holding, and releasing. 24 They demonstrated that oligomer nanoparticles have higher fluorescent quantum yields and comparable stabilities and molar absorptivity, but they release the guest faster than the conjugated polymer nanoparticles. Thus, this feature should be considered for the further design of oligomer-based nanoparticles for theranostic applications. CONs also offer some useful addi...
Quantitative gene expression measurements from tumor tissue are frequently compared with matched normal and/or adjacent tumor tissue expression for diagnostic marker gene selection as well as assessment of the degree of transcriptional deregulation in cancer. Selection of an appropriate reference gene (RG) or an RG panel, which varies depending on cancer type, molecular subtypes, and the normal tissues used for interindividual calibration, is crucial for the accurate quantification of gene expression. Several RG panels have been suggested in breast cancer for making comparisons among tumor subtypes, cell lines, and benign/malignant tumors. In this study, expression patterns of 15 widely used endogenous RGs (ACTB, TBP, GAPDH, SDHA, HPRT, HMBS, B2M, PPIA, GUSB, YWHAZ2, PGK1, RPLP0, PUM1, MRPL19, and RPL41), and three candidate genes that were selected through analysis of two independent microarray datasets (IL22RA1, TC22, ZNF224) were determined in 23 primary breast tumors and their matched normal tissues using qRT-PCR. Additionally, 18S rRNA, ACTB, and SDHA were tested using randomly primed cDNAs from 13 breast tumor pairs to assess the rRNA/mRNA ratio. The tumors exhibited significantly lower rRNA/mRNA ratio when compared to their normals, on average. The expression of the studied RGs in breast tumors did not exhibit differences in terms of grade, ER, or PR status. The stability of RGs was examined based on two different statistical models, namely GeNorm and NormFinder. Among the 18 tested endogenous reference genes, ACTB and SDHA were identified as the most suitable reference genes for the normalization of qRT-PCR data in the analysis of normal matched tumor breast tissue pairs by both programs. In addition, the expression of the gelsolin (GSN) gene, a well-known downregulated target in breast tumors, was analyzed using the two most suitable genes and different RG combinations to validate their effectiveness as a normalization factor (NF). The GSN expression of the tumors used in this study was significantly lower than that of normals showing the effectivity of using ACTB and SDHA as suitable RGs in this set of tumor-normal tissue panel. The combinational use of the best performing two RGs (ACTB and SDHA) as a normalization factor can be recommended to minimize sample variability and to increase the accuracy and resolution of gene expression normalization in tumor-normal paired breast cancer qRT-PCR studies.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.