The capture cross section of magnetized particles with nonvanishing magnetic moment by a Schwarzschild black hole immersed in an asymptotically uniform magnetic field has been studied as an extension of the approach developed in Zakharov (1994 Class. Quantum Grav.
11 1027) for neutral unmagnetized particles in the Reissner–Nordström spacetime. The magnetic moment of the particle is chosen as in de Felice and Sorge (2003 Class. Quantum Grav.
20 469). It is shown that the spin of the particle sustains the stability of particles circularly orbiting around the black hole immersed in a magnetic field, i.e., a spinning particleʼs motion near the Schwarzschild black hole horizon is more stable than that of a particle with zero spin. It is shown that the magnetic parameter essentially changes the value of the critical angular momentum and affects the process of capture of the particles by the central black hole. Furthermore, the interaction between the magnetic moment of the particle and the magnetic field forces stable circular orbits to shift to the central object, and this effect should be taken into account in astrophysical scenarios related to the accretion discs and in measuring the spin of the black holes. The magnetized particleʼs acceleration mechanism near the black hole in an external magnetic field is studied. It is shown that due to the presence of a magnetic field, magnetized particles can accelerate to unlimited high energies.
Capture cross section of magnetized particle (with nonzero magnetic moment) by braneworld black hole in uniform magnetic field is studied. The magnetic moment of particle was chosen as it was done by de Felice and Sorge (Class. Quantum Gravity 20:469, 2003) and for the simplicity particle with zero electric charge is chosen. It is shown that the spin of particle as well as the brane parameter are to sustain the stability of particles circularly orbiting around the black hole in braneworld i.e. spin of particles and brane parameter try to prevent the capture by black hole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.