A new method for the substitution of 3-[(dimethylamino)methyl]indoles (gramines) with malonate-based nucleophiles was developed using 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) as the activating agent for the dimethylamino group. The reaction was completed in 1.5–6 h at room temperature in the presence of a tert-amine base and lithium salt. CDMT afforded superior results to methyl iodide, a common activating agent for the dimethylamino group in Mannich bases, particularly in the reactions of 1-substituted gramines. The reactivity of the possible intermediates, bis(indol-3-ylmethyl)dimethylammonium salts, was examined to obtain mechanistic insights on the reaction. This substitution method with CDMT enabled the sequential transformation of gramines: substitution with (N-alkylidene)aminomalonates followed by the Pictet–Spengler reaction under acidic conditions afforded 1,2,3,4-tetrahydro-β-carboline derivatives in one pot.
The phenyl (Ph) group is a representative substituent in the field of organic chemistry as benzene (the parent molecule) is of fundamental importance. Simple Ph-substituted compounds of common chemical elements are well known. However, extensive structural characterization of tetraphenylammonium (Ph4N+) salts has not been reported. Herein, the synthesis of Ph4N+ salts and their characterization data including the 1H- and 13C-nuclear magnetic resonance (NMR) spectra and the single-crystal X-ray structure have been presented. An intermolecular radical coupling reaction between an aryl radical and a triarylammoniumyl radical cation was conducted to synthesize the target moieties. The Ph4N+ salts described herein are the simplest tetraarylammonium (Ar4N+) salts known. The results reported herein can potentially help access the otherwise inaccessible non-bridged Ar4N+ salts, a new class of rigid and sterically hindered organic cations.
The phenyl (Ph) group is a representative substituent in the field of organic chemistry as benzene (the parent molecule) is of fundamental importance. Simple Ph-substituted compounds of common chemical elements are well known. However, extensive structural characterization of tetraphenylammonium (Ph4N+) salts has not been reported. Herein, the synthesis of Ph4N+ salts and their characterization data including the 1H and 13C nuclear magnetic resonance (NMR) spectra and the single-crystal X-ray structure have been presented. An intermolecular radical coupling reaction between an aryl radical and a triarylammoniumyl radical cation was conducted to synthesize the target moieties. The Ph4N+ salts described herein are the simplest tetraarylammonium (Ar4N+) salts known. The results reported herein can potentially help access the otherwise inaccessible non-bridged Ar4N+ salts, a new class of rigid and sterically hindered organic cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.