Predicting disease candidate genes from human genome is a crucial part of nowadays biomedical research. According to observations, diseases with the same phenotype have the similar biological characteristics and genes associated with these same diseases tend to share common functional properties. Therefore, by applying machine learning methods, new disease genes are predicted based on previous ones. In recent studies, some semi-supervised learning methods, called Positive-Unlabeled Learning (PU-Learning) are used for predicting disease candidate genes. In this study, a novel method is introduced to predict disease candidate genes through gene expression profiles by learning hidden Markov models. In order to evaluate the proposed method, it is applied on a mixed part of 398 disease genes from three disease types and 12001 unlabeled genes. Compared to the other methods in literature, the experimental results indicate a significant improvement in favor of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.