BackgroundConditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP).MethodsWe examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40–60 on NRS 0–100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz).ResultsOnly in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5).ConclusionsPCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes.Trial registrationGerman Clinical Trials Register DRKS-ID: DRKS00012779, retrospectively registered on 24 July 2017.
Painful cutaneous electrical stimulation leads to moderate habituation of pain and evoked potential amplitudes, but the conditioned pain modulation effect using this method is significantly larger, which might indicate a different mechanism in central processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.