Microresonator frequency combs (microcombs) are enabling new applications in frequency synthesis and metrologyfrom high-speed laser ranging to coherent optical communications. One critical parameter that dictates the performance of the microcomb is the optical quality factor (Q) of the microresonator. Microresonators fabricated in planar structures such as silicon nitride (Si3N4) allow for dispersion engineering and the possibility to monolithically integrate the microcomb with other photonic devices. However, the relatively large refractive index contrast and the tight optical confinement required for dispersion engineering make it challenging to attain Si3N4 microresonators with Qs > 10 7 using standard subtractive processing methodsi.e. photonic devices are patterned directly on the asdeposited Si3N4 film. In this work, we achieve ultra-smooth Si3N4 microresonators featuring mean intrinsic Qs around 11 million. The cross-section geometry can be precisely engineered in the telecommunications band to achieve either normal or anomalous dispersion, and we demonstrate the generation of mode-locked dark-pulse Kerr combs as well as soliton microcombs. Such high-Qs allow us to generate soliton microcombs with photodetectable repetition rates, demonstrated here for the first time in Si3N4 microresonators fabricated using a subtractive processing method. These results enhance the possibilities for co-integration of microcombs with high-performance photonic devices, such as narrow-linewidth externalcavity diode lasers, ultra-narrow filters and demultiplexers.
Fiber-optical networks are a crucial telecommunication infrastructure in society. Wavelength division multiplexing allows for transmitting parallel data streams over the fiber bandwidth, and coherent detection enables the use of sophisticated modulation formats and electronic compensation of signal impairments. In the future, optical frequency combs may replace multiple lasers used for the different wavelength channels. We demonstrate two novel signal processing schemes that take advantage of the broadband phase coherence of optical frequency combs. This approach allows for a more efficient estimation and compensation of optical phase noise in coherent communication systems, which can significantly simplify the signal processing or increase the transmission performance. With further advances in space division multiplexing and chip-scale frequency comb sources, these findings pave the way for compact energy-efficient optical transceivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.