We investigate second-order quasilinear equations of the form fijuxixj = 0, where u is a function of n independent variables x1, …, xn, and the coefficients fij depend on the first-order derivatives p1 = ux1, …, pn = uxn only. We demonstrate that the natural equivalence group of the problem is isomorphic to SL(n + 1, R), which acts by projective transformations on the space Pn with coordinates p1, …, pn. The coefficient matrix fij defines on Pn a conformal structure fij(p)dpidpj. The necessary and sufficient conditions for the integrability of such equations by the method of hydrodynamic reductions are derived, implying that the moduli space of integrable equations is 20-dimensional. Any equation satisfying the integrability conditions is necessarily conservative, and possesses a dispersionless Lax pair. The integrability conditions imply that the conformal structure fij(p) dpidpj is conformally flat, and possesses infinitely many three-conjugate null coordinate systems parametrized by three arbitrary functions of one variable. Integrable equations provide examples of such conformal structures parametrized by elementary functions, elliptic functions and modular forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.