Cochlear Limited (Cochlear™) released the fourth-generation cochlear implant system, Nucleus® Freedom™, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance™ electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of SmartSound™ to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.
Hearing loss is a modifiable risk factor for dementia in older adults. Whether hearing aid use can delay the onset of cognitive decline is unknown. Participants in this study (aged 62–82 years) were assessed before and 18 months after hearing aid fitting on hearing, cognitive function, speech perception, quality of life, physical activity, loneliness, isolation, mood, and medical health. At baseline, multiple linear regression showed hearing loss and age predicted significantly poorer executive function performance, while tertiary education predicted significantly higher executive function and visual learning performance. At 18 months after hearing aid fitting, speech perception in quiet, self-reported listening disability and quality of life had significantly improved. Group mean scores across the cognitive test battery showed no significant decline, and executive function significantly improved. Reliable Change Index scores also showed either clinically significant improvement or stability in executive function for 97.3% of participants, and for females for working memory, visual attention and visual learning. Relative stability and clinically and statistically significant improvement in cognition were seen in this participant group after 18 months of hearing aid use, suggesting that treatment of hearing loss with hearing aids may delay cognitive decline. Given the small sample size, further follow up is required.
In older adults, hearing loss is independently associated with an increased rate of cognitive decline, and has been identified to be a modifiable risk factor for dementia. The mechanism underlying the cognitive decline associated with hearing loss is not understood, but it is known that the greater the hearing loss, the faster the rate of decline. It is unknown whether remediation of hearing loss with hearing devices can delay cognitive decline. This 5-year international longitudinal study is investigating the impact of cochlear implants on cognitive function in older people with severe-profound hearing loss, and whether remediation of hearing loss could delay the onset of cognitive impairment. This is the first study to examine the major primary risk factors associated with dementia in the same cohort. Participants were assessed before cochlear implantation and 18 months later using an identical battery including a visually presented cognitive assessment tool (Cogstate battery) that is highly sensitive to small changes in cognition and suitable for use with people with hearing loss. Hearing and speech perception ability were assessed in sound-treated conditions by an audiologist, and a range of questionnaire tools was administered to assess self-perceived ease of listening, quality of life, physical activity, diet, social and emotional loneliness, isolation, anxiety, and depression. A detailed medical health history was taken. Pre-operatively, despite the small initial sample size ( n = 59), increased hearing loss and age predicted significantly poorer executive function and visual attention, while tertiary education predicted better executive function. Better self-reported quality of life was correlated with better visual learning performance, and engaging in frequent vigorous physical activity was correlated with poorer visual learning performance. At 18 months, for the first 20 participants, significant benefits of cochlear implants were seen in terms of speech perception, communication ability, and quality of life. Multiple linear regression modeling showed executive function improved significantly for non-tertiary educated males, while cognitive function remained stable for other participants. Further follow-up at 18 month intervals with a larger sample will reveal the effects of cochlear implant intervention on all outcomes, and whether this can delay cognitive decline.
Numerical estimations of pitch were obtained from nine postlinguistically deafened adults using the 22-electrode cochlear implant manufactured by Cochlear Pty. Limited. A series of electrodes on the array were stimulated using three modes of stimulation: Bipolar (BP), common ground (CG), and monopolar (MONO). In BP stimulation, an electric current was passed between two electrodes separated by one electrode for eight patients and two electrodes for one patient. In CG stimulation, a single electrode was activated and the other electrodes on the array were connected together to serve as the return path for the current. In MONO stimulation, an electric current was passed between a single electrode and the most basal electrode on the array. Pitch estimations were generally consistent with the tonotopic organization of the cochlea. There was a marked reversal in pitch for electrodes in the middle of the array using CG stimulation for three patients. A reduced range of pitch using MONO stimulation was recorded for patients where the most basal electrode was internal to the cochlea. There were also individual differences in pitch estimations between the three modes of stimulation for most patients. The current levels required to elicit threshold (T) and comfortable listening (C) levels were, in general, higher for BP stimulation than for CG stimulation and were lowest for MONO stimulation. For CG stimulation, there was a tendency for T and C levels to be higher for electrodes in the middle of the array than at the basal or apical ends. For MONO stimulation, T and C levels uniformly increased in an apical to basal direction for the majority of patients. There was no consistent pattern in T and C levels for BP stimulation. The size of the range of usable hearing using CG stimulation tended to be similar to that using BP stimulation and was usually higher than that using MONO stimulation.
The aim of this study was to assess auditory sequential, short-term-memory (SSTM) performance in young children using cochlear implants (CI group) and to examine the relationship of this performance to receptive language performance. Twenty-four children, 5 to 11 years old, using the Nucleus 22-electrode cochlear implant, were tested on a number of auditory and visual tasks of SSTM. The auditory memory tasks were designed to minimize the effect of auditory discrimination ability. Stimuli were chosen that children with cochlear implants could accurately identify with a reaction time similar to that of a control group of children with normal hearing (NH group). All children were also assessed on a receptive language test and on a nonverbal intelligence scale. As expected, children using cochlear implants demonstrated poorer auditory and visual SSTM skills than their hearing peers when the stimuli were verbal or were pictures that could be readily labeled. They did not differ from their peers with normal hearing on tasks where the stimuli were less likely to be verbally encoded. An important finding was that the CI group did not appear to have a sequential memory deficit specific to the auditory modality. The difference scores (auditory minus visual memory performance) for the CI group were not significantly different from those for the NH group. SSTM performance accounted for significant variance in the receptive language performance of the CI group. However, a forward stepwise regression analysis revealed that visual spatial memory (one of the subtests of the nonverbal IQ test) was the main predictor of variance in the language scores of the children using cochlear implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.