Mate attraction in Aplysia involves a long-distance water-borne signal (the protein pheromone attractin), which is released during egg laying. Aplysia californica attractin attracts species that produce closely related attractins, such as Aplysia brasiliana, whose geographic distribution does not overlap that of A. californica. This finding suggests that other mollusks release attractin-related pheromones to form and maintain breeding aggregations. We describe four additional members of the attractin family: A. brasiliana, Aplysia fasciata, Aplysia depilans (which aggregates with A. fasciata aggregations), and Aplysia vaccaria (which aggregates with A. californica aggregations). On the basis of their sequence similarity with A. californica attractin, the attractin proteins fall into two groups: A. californica, A. brasiliana, and A. fasciata (91-95% identity), and A. depilans and A. vaccaria (41-43% identity). The sequence similarity within the attractin family, the conserved six cysteines, and the compact fold of the NMR solution structure of A. californica attractin suggest a common fold for this pheromone family containing two antiparallel helices. The second helix contains the IEECKTS sequence conserved in Aplysia attractins. Mutating surface-exposed charged residues within this heptapeptide sequence abolishes attractin activity, suggesting that the second helix is an essential part of the receptor-binding interface.
In this paper, we have mapped the cellular localization of various transmitters onto the central neurons which are involved in male copulation behavior in Lymnaea stagnalis, by combining retrograde tracing with immunocytochemistry and in situ hybridization. Evidence is provided that neurons which were backfilled from the penis nerve, the sole nerve to innervate the male copulatory organ, synthesize a multitude of neuropeptides (APGWamide, Lymnaea neuropeptide tyrosin [LNPY], conopressin, pedal peptide, SEEPLY, DEILSR, myomodulin, and Lymnaea inhibitory peptide [LIP]) as well as the classical neurotransmitter, serotonin. In the anterior lobe, the backfilled neurons mainly contain the tetrapeptide APGWamide and conopressin, and not LNPY or pedal peptide. The results suggest a central role in the regulation of copulation activity for the anterior lobe neurons that produce APGWamide and conopressin. Immunostainings of backfilled nervous systems revealed immunopositive axons originating from these neurons to form varicosities on the cell somata of neurons in the other clusters contributing to the innervation of the male sexual system. Neurons from the right parietal ganglion projecting into the penis nerve were electrophysiologically and morphologically identified by simultaneously recording from the cell body intracellularly and the penis nerve extracellularly and subsequently filling them with an anterograde tracer and subjecting them to immunocytochemistry. This method has provided links between morphology, physiology, and the transmitter contents of these neurons.
A morphologically defined group of peptidergic neurons in the CNS of the hermaphroditic snail, Lymnaea stagnalis, is concerned with the control of a very specific element of male sexual behavior. These neurons are located in the anterior lobe of the right cerebral ganglion (rAL). By using chronically implanted electrodes, we show that the rAL neurons are selectively active during eversion of the penis-carrying structure, the preputium. The preputium is normally contained inside the body cavity and is everted during copulation in the male role. Electrical stimulation of the rAL neurons through the implanted electrodes, induced eversion of the preputium in vivo. Injection of APGWamide (Ala-Pro-Gly-Try-NH2), a small neuropeptide that is present in all rAL neurons, induced eversion of the preputium. Application of APGWamide to in vitro preparations of the preputium caused relaxation of this organ. In contrast, injection of the neuropeptide conopressin, which is co-localized with APGWamide in 60% of the rAL neurons, did not induce any behavior associated with male sexual activities. These results show that the neurons of the rAL can induce an eversion of the preputium as occurs during male copulation by release of APGWamide during a period of electrical activity.
We studied the role of the prostate gland in determining the level of male sexual drive in the hermaphroditic pond snail Lymnaea stagnalis. Male sexual drive is high after a period of social isolation and decreases after copulation as a male. A positive correlation exists between the level of male sexual drive and the volume of the prostate gland. Like male sexual drive, the volume of the prostate gland increases during a period of social isolation and decreases after copulation as a male. Behavioural experiments demonstrated that animals with a lesion of the nerve that innervates the prostate gland (NP1) have a lower level of male sexual drive after social isolation than control animals. However, lesion of NP1 did not affect the increase in the volume of the prostate gland caused by social isolation. Extracellular recordings from NP1 in a semi-intact preparation show a change in firing pattern during an experimentally induced increase in prostate gland volume. The results indicate that NP1 serves as a nervous pathway for the male sexual drive. We propose a simple motivational model for male sexual behaviour in L. stagnalis in which the volume of the prostate gland sets the level of male sexual drive.
SUMMARYMany animals are equipped with organs that can be everted, a notable example being male copulatory organs. The ability to protrude or evert an organ generally requires protractor and retractor muscles. Male copulatory behaviour of the pond snail Lymnaea stagnalis (L.) involves eversion (protraction) and retraction of the relatively large penis-carrying organ. For this preputium, protractor and retractor muscle bands have been defined, which implies eversion and retraction through the activity of these muscle bands. However, no physiological data are available that confirm that the terms protractor and retractor are appropriate. To test whether eversion and retraction are possible without protractor and/or retractor muscle bands, lesion experiments were performed. The results show that with either one or several muscle bands lesioned, snails were still capable of everting their preputium and using it for copulation. However, the majority of animals that had six or more muscle bands lesioned were unable to retract its preputium. Hence, retractor muscle bands serve their designated function whereas protractor muscle bands do not. We therefore suggest that a different terminology is used in which all muscle bands are retractors and, based on their location, are either called distal or proximal retractors. The findings furthermore indicate that the preputium muscle bands are normally contracted, possibly in a catch state, retaining the organ inside without high-energy expenditure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.