We study semidilute and concentrated solutions of mononucleosomal DNA at three different NaCl concentrations by static and dynamic light scattering, viscosity, and electron cryomicroscopy. At low enough DNA concentrations the second virial coefficient behaves in the usual manner and can be interpreted by a charged rod model. It is possible to understand the concentration and scattering vector dependence of the scattering with the help of recent theoretical analyses of semidilute solutions of charged rods. Moreover, the mutual friction coefficient is in accord with the theory of hydrodynamic screening. At a certain critical concentration which increases with added salt, the intensity of the equilibrium static scattering increases several 100-fold, indicating the DNA aggregates. The dynamic scattering is in line with the static scattering; a very long decay time seems to be associated with the DNA aggregates. Freeze electron micrographs definitely bear out the existence of DNA globules which appear to form loose aggregates. Precautions have been taken to ensure there are no spurious contaminants to the best of our knowledge. Long-range attractive forces between polyions have been postulated recently within the framework of a semiquantitative theory; these ideas are tested by analyzing the ionic-strength dependence of the third virial coefficient and the onset of aggregation.
IntroductionFor some time, double-stranded DNA has been suspected of aggregating under conditions where this is unlikely to occur from a balance between electrostatic and dispersion forces. Mandelkern et a1.l concluded from their rotational relaxation times in solutions of sonicated DNA at low salt that DNA may aggregate into bundles containing seven DNA rods although they neglected to account for ionic friction. In the same year Fulmer et a1.2 measured strong slow decays in the dynamic light scattering by DNA suspensions below M simple salt. Sonicated calf-thymus DNA actually gels without liquid-crystalline order at nondilute concentrations, as has been established rheometrially.^!^ By monitoring the steady-state fluorescence polarization, Hard and Kearns5 deduced that monodisperse DNA must start to aggregate at a DNA concentration of 5 g/L in 1 M NaC1. Nicolai and MandeF thought DNA might be aggregating at low salt and nondilute DNA concentrations because the static scattering started to increase once the DNA solution was allowed to remain quiescent after filtration. Contrastingly, the scattering intensity of a flowing suspension was constant: presumably, the aggregates break up
A pulsed gradient spin-echo FT 1 H NMR study on the system soybean lecithin/water/perdeuterated cyclohexane is presented. The self-diffusion coefficient of water, D w , was measured as a function of the water content (W 0 ) and was found to show a bell-shaped trend. The composition at which the maximum in D w occurs is the same at which the viscosity is the highest. We rationalize the rising part of the plot in terms of a water diffusion inside wormlike reverse micelles which increase their length upon increasing W 0 . On the contrary, the descending part indicates a rod-to-sphere evolution of the aggregate's shape. This interpretation is supported by measurement on the headgroup rotation by dielectric spectroscopy. The composition at which a structural transition occurs and the location of the phase boundary can be predicted by a geometrical model in which the effective packing parameter is equal to 1.58. This value is in agreement with small-angle neutron scattering data in the literature.
Lecithin water-in-oil microemulsions have been shown to form long polymerlike micelles. Dielectric spectra of this system are characterized by two dispersions. The high frequency dispersion, related to the head-group rotation of the lecithin molecule, displays a different dependence on water addition in the same two regimes that show up differently in the dynamics measured with several other techniques. The low frequency dispersion is due to a polymeric Rouse/Zimm type mode, which above a certain concentration starts to decrease and shows the characteristics of percolation. In the high water regime the decrease of the relaxation time is accompanied by an increase in conductivity, whereas in the low water regime the conductivity decreases. These data are interpreted in terms of concentration induced percolation and water induced coalescence into a connected network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.