Campylobacter has been recognized as a leading bacterial cause of human gastroenteritis in the United States, with 40000 documented cases annually. Epidemiological data suggest that contaminated products of animal origin, especially poultry, contribute significantly to campylobacteriosis. Thus, reduction of contamination of raw poultry would have a large impact in reducing incidence of illness. Contamination occurs both on the farm and in poultry slaughter plants. Routine procedures on the farm such as feed withdrawal, poultry handling, and transportation practices have a documented effect on Campylobacter levels at the processing plant. At the plant, defeathering, evisceration, and carcass chillers have been documented to cross-contaminate poultry carcasses. Carcass washings and the application of processing aids have been shown to reduce populations of Campylobacter in the carcasses by log 10 0.5 to log 10 1.5; however, populations of Campylobacter have been shown to enter a poultry processing plant at levels between log 10 5 colony-forming units (CFU)/mL and log 10 8 CFU/mL of carcass rinse. The purpose of this article is to review Campylobacter, the infection that it causes, its association with poultry, contamination sources during processing, and intervention methods.
This study was conducted to investigate the effects of cryogenic cooling on shell egg quality. Gaseous nitrogen (GN), liquid nitrogen (LN), and gaseous carbon dioxide (GC) were utilized to rapidly cool eggs in a commercial egg processing facility and were compared to traditional cooling (TC). A modified food freezer was attached to existing egg processing equipment in order to expose eggs to the selected cryogen. In Experiment 1, eggs were treated with GN, LN, and TC then stored and tested over 10 wk. Experiment 2 eggs were treated (GC and TC) and evaluated for 12 wk. Quality factors that were measured included Haugh units, vitelline membrane strength and deformation at rupture, and USDA shell egg grades for quality defects. Haugh unit values were greater for cryogenically treated eggs as compared to traditionally cooled eggs (Experiment 1: 73.27, GN; 72.03, LN; and 71.4, TC and Experiment 2: 74.42, GC and 70.18, TC). The percentage of loss eggs in the GN treatment was significantly (P < 0.01) greater than those of the LN and TC treatments. Vitelline membrane strength was greater for the cryogenically cooled eggs versus traditional processing. Vitelline membrane breaking strength decreased over storage time. Vitelline membrane deformation at rupture was significantly (P < 0.05) greater for the cryogenically cooled eggs compared to the traditional eggs in each experiment. Use of the technology could allow for egg quality to be maintained for a longer time, which could increase international markets and potentially lead to extended shelf lives.
The objective of this study was to determine the effect of egg testing temperature on quality measurements of shell eggs. The quality measurements compared included 3 Haugh unit (HU) devices (electronic Haugh, tripod Haugh, and Haugh meter), egg weight, albumen height, albumen width, albumen index, yolk width, yolk height, yolk index, percentage of thin albumen, and vitelline membrane strength at 3 temperatures of 5, 13, and 23 degrees C from 2 strains of laying hens (Hyline W36 and Bovans White) at 2 storage times. The HU measurements averaged 72.44 at time zero and 59.99 at 7 wk. At 7 wk for all devices, HU values decreased 6 units with increased temperature (P < 0.05). The electronic Haugh and tripod Haugh devices gave equal measurements for all testing conditions. The Haugh meter gave equal values at 5 degrees C for fresh eggs but lower HU at higher temperatures and 7 wk storage. Thus, it is recommended that egg testing temperature be reported when HU are measured. Coefficient of variation generally increased for all HU methods with increasing temperature. Although there was a proportionately different amount of thin albumen detected between the strains of laying hens, no significant difference was seen in HU. From the evaluated methods for measuring quality, the electronic Haugh, which electronically measures albumen height and calculates HU, provided the lowest coefficient of variation, was sensitive to quality loss, and gave the highest quality measurement (5 degrees C).
Campylobacter, a major foodborne pathogen found in poultry products, remains a serious problem facing poultry processors. Campylobacter research has primarily focused on detection methods, prevalence, and detection on carcasses; limited research has been conducted on intervention. The aim of this study was to assess the effectiveness of carcass washing systems in 4 large broiler-processing plants in removing Campylobacter species. Washing systems evaluated included combinations of inside/outside carcass washers and homemade cabinet washers. Processing aids evaluated were trisodium phosphate (TSP) and acidified sodium chlorite (ASC). The washer systems consisted of 1 to 3 carcass washers and used from 2.16 to 9.73 L of water per carcass. The washer systems used chlorinated water with 25 to 35 ppm of total chlorine. These washer systems on average reduced Campylobacter populations by log 0.5 cfu/mL from log 4.8 cfu/mL to log 4.3 cfu/mL. Washer systems with TSP or ASC reduced Campylobacter populations on average by an additional log 1.03 to log 1.26, respectively. Total average reductions in Campylobacter populations across the washer system and chill tank were log 0.76 cfu/mL. Washer systems that included antimicrobial systems had total average reductions in Campylobacter populations of log 1.53 cfu/mL. These results suggest that carcass washer systems consisting of multiple washers provide minimal reductions in Campylobacter populations found on poultry in processing plants. A more effective treatment of reducing Campylobacter populations is ASC or TSP treatment; however, these reductions, although significant, will not eliminate the organism from raw poultry.
In this study, the effect of varying dietary vitamin E levels on the oxidative stability, flavor, color, and volatile profiles of refrigerated and frozen turkey breast meat was examined. Nicholas turkey toms were reared on diets containing vitamin E levels as dl-alpha-tocopheryl acetate equivalent to the NRC recommendations (12 and 10 IU/kg from 0 to 8 and 9 to 18 wk, respectively) and 5x, 10x, and 25x the NRC diet. Two other diets were evaluated and included feeding the NRC diet until 15 and 16 wk followed by a diet containing 20x the NRC vitamin E level. All turkeys were processed in a commercial turkey processing plant and breast meat scored for color. Breast meat was excised from four carcasses per treatment and evaluated after refrigeration (1 and 7 d) or frozen storage (30, 90, 150 d) for oxidative stability and sensory quality by TBA analysis, descriptive flavor profiling, and headspace gas chromatography. The TBA values were inversely related to the dietary vitamin E levels. Refrigerated samples had TBA values 78 to 88% lower for the 10x and 25x vitamin E treatments, respectively, than for the NRC control treatment. No differences in TBA values (refrigerated samples) were detected for the 10x, 25x, and 20x (3 wk feeding duration) or across all treatments for samples frozen for 5 mo. The 10x and 25x NRC diets produced the most typical and acceptable turkey meat flavors with the fewest oxidized off-flavor notes for both fresh and frozen samples as opposed to the more oxidized flavor notes detected in the control samples. Mean color scores increased, indicative of less pale meat, as the level and duration of feeding dietary vitamin E increased. These findings showed that varying dietary vitamin E levels significantly influenced the oxidative stability and functionality of turkey breast meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.