Drug administration via high flow nasal cannula (HFNC) has been described in pediatrics but the amount of albuterol delivery with an HFNC is not known. The purpose of this study is to quantify aerosol delivery with heliox and oxygen (O(2)) in a model of pediatric ventilation. A vibrating mesh nebulizer (Aeroneb Solo, Aerogen) was placed on the inspiratory inlet of a heated humidifier and heated wire circuit attached to a pediatric nasal cannula (Optiflow, Fisher & Paykel). Breathing parameters were tidal volume (V(t)) 100 ml, respiratory rate (RR) 20/min, and I-time of 1 sec. Albuterol sulfate (2.5 mg/3 ml) was administered through a pediatric HFNC with O(2) (100%) and heliox (80/20% mixture). A total of 12 runs, using O(2) and heliox were conducted at 3 and 6 L/min (n = 3). Drug was collected on an absolute filter, eluted and measured using spectrophotometry. The percent inhaled dose (mean ± SD) was similar with heliox and O(2) at 3 L/min (11.41 ± 1.54 and 10.65 ± 0.51, respectively; P = 0.465). However at 6 L/min drug deposition was ≥ 2-fold greater with heliox (5.42 ± 0.54) than O(2) (1.95 ± 0.50; P = 0.01). Using a pediatric model of HFNC, reducing delivered flow from 6 to 3 L/min increased inhaled albuterol delivery ≥ 2-fold but eliminated the increase in inhaled drug efficiency associated with heliox.
National and international guidelines recommend droplet/airborne transmission and contact precautions for those caring for coronavirus disease 2019 (COVID-19) patients in ambulatory and acute care settings. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, an acute respiratory infectious agent, is primarily transmitted between people through respiratory droplets and contact routes. A recognized key to transmission of COVID-19, and droplet infections generally, is the dispersion of bioaerosols from the patient. Increased risk of transmission has been associated with aerosol generating procedures that include endotracheal intubation, bronchoscopy, open suctioning, administration of nebulized treatment, manual ventilation before intubation, turning the patient to the prone position, disconnecting the patient from the ventilator, noninvasive positive-pressure ventilation, tracheostomy, and cardiopulmonary resuscitation. The knowledge that COVID-19 subjects can be asymptomatic and still shed virus, producing infectious droplets during breathing, suggests that health care workers (HCWs) should assume every patient is potentially infectious during this pandemic. Taking actions to reduce risk of transmission to HCWs is, therefore, a vital consideration for safe delivery of all medical aerosols. Guidelines for use of personal protective equipment (glove, gowns, masks, shield, and/or powered air purifying respiratory) during high-risk procedures are essential and should be considered for use with lower risk procedures such as administration of uncontaminated medical aerosols. Bioaerosols generated by infected patients are a major source of transmission for SARS CoV-2, and other infectious agents. In contrast, therapeutic aerosols do not add to the risk of disease transmission unless contaminated by patients or HCWs.
With a distressed breathing pattern, aerosol delivery was greater at 30 and 50 L/min than with a quiet breathing pattern. Trends toward higher inhaled dose with heliox during HFNC were not significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.