We present measurements of a magnetic reconnection in a plasma created by two laser beams (1 ns pulse duration, 1 x 10(15) W cm(-2)) focused in close proximity on a planar solid target. Simultaneous optical probing and proton grid deflectometry reveal two high velocity, collimated outflowing jets and 0.7-1.3 MG magnetic fields at the focal spot edges. Thomson scattering measurements from the reconnection layer are consistent with high electron temperatures in this region.
A detailed, in situ study of field-aligned current (FAC) structure in a transient, substorm expansion phase auroral arc is conducted using electric field, magnetometer, and electron density measurements from the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket, launched from Poker Flat, AK. These data are supplemented with larger-scale, contextual measurements from a heterogeneous collection of ground-based instruments including the Poker Flat incoherent scatter radar and nearby scanning doppler imagers and filtered all-sky cameras. An electrostatic ionospheric modeling case study of this event is also constructed by using available data (neutral winds, electron precipitation, and electric fields) to constrain model initial and boundary conditions. MICA magnetometer data are converted into FAC measurements using a sheet current approximation and show an up-down current pair, with small-scale current density and Poynting flux structures in the downward current channel. Model results are able to roughly recreate only the large-scale features of the field-aligned currents, suggesting that observed small-scale structures may be due to ionospheric feedback processes not encapsulated by the electrostatic model. The model is also used to assess the contributions of various processes to total FAC and suggests that both conductance gradients and neutral dynamos may contribute significantly to FACs in a narrow region where the current transitions from upward to downward. Comparison of Poker Flat Incoherent Scatter Radar versus in situ electric field estimates illustrates the high sensitivity of FAC estimates to measurement resolution.
Laser-driven magnetic reconnection is investigated using proton deflectometry. Two laser beams of nanosecond duration were focused in close proximity on a solid target to intensities of I∼1×1015 W cm−2. Through the well known ∇ne×∇Te mechanism, azimuthal magnetic fields are generated around each focal spot. During the expansion of the two plasmas, oppositely oriented field lines are brought together resulting in magnetic reconnection in the region between the two focal spots. The spatial scales and plasma parameters are consistent with the reconnection proceeding due to a Hall mechanism. An optimum focal spot separation for magnetic reconnection to occur is found to be ≈400±100 μm. Proton probing of the temporal evolution of the interaction shows the formation of the boundary layer between the two expanding plasma plumes and associated magnetic fields, as well as an instability later in the interaction. Such laboratory experiments provide an opportunity to investigate magnetic reconnection under unique conditions and have possible implications for multiple beam applications such as inertial confinement fusion experiments.
Measurements of the bidirectional plasma jets that form at the surface of a solid target during a laser-generated driven magnetic reconnection are presented. Resistivity enhancement of at least 25× the classical Spitzer value is required when applying the Sweet–Parker model of reconnection to reconcile the experimentally observed reconnection time scale. Analytic calculations show that a fast reconnection model, which includes a priori the effects of microturbulent resistivity enhancement, better reproduces the experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.