This paper presents the results of the study of nickel-based coatings fabricated by cold gas spraying. In this study, compositions based on Ni, Ni–Cu, Ni–Zn, and Ni–Al2O3/TiC coatings applied to low-alloyed steel bases were investigated. The composition, type of powder (mechanical mix or mechanically alloying), and thickness varied to choose the optimal characteristics for recovery, repair procedures, and specific applications in the oil and gas industry media. The second phase was added to Ni-based coatings to increase corrosion and wear resistance. Pure nickel coatings were also studied as a benchmark. Corrosion resistance was studied by means of electrochemical testing and autoclave testing in simulated oilfield conditions. Hydroabrasive resistance was studied using a unique testing bench. Scanning electron microscopy mappings, microhardness testing, and adhesion testing were used to correlate the results of the tests with the structure, continuity, and porosity of the studied coatings. It was shown that applying mechanical alloying of the powder did not lead to an effective increase of corrosion and hydroabrasive resistance. All the studied coating specimens have a sufficiently high adhesion. Ni–Zn coating has the lowest corrosion resistance and high hydroabrasive resistance. Ni–Cu coatings have high corrosion and the lowest hydroabrasive resistance. Al2O3/TiC additives give ambiguous results in the studied properties. A thickness of 40–60 microns provides sufficient performance of the studied coatings. Thus, varying chemical composition and thickness of coatings allows for obtaining the optimal qualities of Ni-based coatings made by cold gas spraying for use in the oil and gas industry.
The complexity of the operating conditions in oil fields requires the development and use of materials with unique properties. This paper presents the study results for nickel-based coatings fabricated by cold gas spraying. In this study, compositions based on Ni, Ni-Cu, Ni-Zn, Ni-Al2O3/TiC coatings applied to low-alloyed steel bases were investigated. Corrosion resistance was studied by means of electrochemical autoclave testing in simulated oilfield conditions. Hydroabrasive resistance was studied using a unique testing bench. Scanning electron microscopy mappings, microhardness testing, and adhesion testing were used to correlate the results of the tests with the structure, continuity, and porosity of the studied coatings. All the studied coating specimens had a sufficiently high adhesion. The Ni-Zn coating exhibited the lowest corrosion resistance and high hydroabrasive resistance. The Ni-Cu coatings exhibited a high degree of corrosion. The Al2O3/TiC additives gave ambiguous results with respect to the studied properties. Thicknesses of 40–60 microns provided acceptable performance for the studied coatings. Thus, varying the chemical composition the thickness of coatings allows optimal qualities to be obtained for Ni-based coatings made by cold gas spraying for use in the oil and gas industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.