We have used the latest HI observations of the Small Magellanic Cloud (SMC), obtained with the Australia Telescope Compact Array and the Parkes telescope, to re-examine the kinematics of this dwarf, irregular galaxy. A large velocity gradient is found in the HI velocity field with a significant symmetry in iso-velocity contours, suggestive of a differential rotation. A comparison of HI data with the predictions from tidal models for the SMC evolution suggests that the central region of the SMC corresponds to the central, disk-or bar-like, component left from the rotationally supported SMC disk prior to its last two encounters with the Large Magellanic Cloud. In this scenario, the velocity gradient is expected as a left-over from the original, pre-encounter, angular momentum. We have derived the HI rotation curve and the mass model for the SMC. This rotation curve rapidly rises to about 60 km s −1 up to the turnover radius of ∼ 3 kpc. A stellar mass-to-light ratio of about unity is required to match the observed rotation curve, suggesting that a dark matter halo is not needed to explain the dynamics of the SMC. A set of derived kinematic parameters agrees well with the assumptions used in tidal theoretical models that led to a good reproduction of observational properties of the Magellanic System. The dynamical mass of the SMC, derived from the rotation curve, is 2.4 × 10 9 M ⊙ .1 Throughout this paper we assume a distance to the SMC of 60 kpc (Westerlund 1997).
Using spectral-line observations of HNCO, N 2 H + , and HNC, we investigate the kinematics of dense gas in the central ∼ 250 pc of the Galaxy. We present scouse (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line-fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, scouse accurately describes the {l, b, v LSR } distribution of Central Molecular Zone (CMZ) gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km s −1 < σ < 53.1 km s −1 . A median dispersion of 9.8 km s −1 , translates to a Mach number, M 3D 28. The gas is distributed throughout several "streams", with projected lengths ∼ 100 − 250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km s −1 clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l, b, v LSR } space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km s −1 and 50 km s −1 clouds and Sgr C.
We present first results of the H2O Southern Galactic Plane Survey (HOPS), using the Mopra Radio Telescope with a broad‐band backend and a beam size of about 2 arcmin. We have observed 100 deg2 of the southern Galactic plane at 12 mm (19.5–27.5 GHz), including spectral line emission from H2O masers, multiple metastable transitions of ammonia, cyanoacetylene, methanol and radio recombination lines. In this paper, we report on the characteristics of the survey and H2O maser emission. We find 540 H2O masers, of which 334 are new detections. The strongest maser is 3933 Jy and the weakest is 0.7 Jy, with 62 masers over 100 Jy. In 14 maser sites, the spread in the velocity of the H2O maser emission exceeds 100 km s−1. In one region, the H2O maser velocities are separated by 351.3 km s−1. The rms noise levels are typically between 1 and 2 Jy, with 95 per cent of the survey under 2 Jy. We estimate completeness limits of 98 per cent at around 8.4 Jy and 50 per cent at around 5.5 Jy. We estimate that there are between 800 and 1500 H2O masers in the Galaxy that are detectable in a survey with similar completeness limits to HOPS. We report possible masers in NH3 (11,9) and (8,6) emission towards G19.61−0.23 and in the NH3 (3,3) line towards G23.33−0.30.
Artículo de publicación ISIWe have mapped 20 spectral lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth University of New South Wales-Mopra Spectrometer (UNSW-MOPS) digital filter bank, obtaining∼2 kms−1 spectral and∼40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO,H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude −0.◦7 to 1.◦8 and latitude −0.◦3 to 0.◦2, including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6−0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest eight lines. This is dominated by the first component, showing that the large-scale distribution of all molecules is very similar.We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete mapped region of the CMZ. We highlight the behaviour of the bright HCN, HNC and HCO+ line emission, together with that from the 13C isotopologues of these species, and compare the behaviour with that found in extragalactic sources where the emission is unresolved spatially. We also find that the isotopologue line ratios (e.g. HCO+/H13CO+) rise significantly with increasing redshifted velocity in some locations. Line luminosities are also calculated and compared to that of CO, as well as to line luminosities determined for external galaxies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.