We report on the development and characterization of high performance supercapacitor electrodes synthesized using electrophoretic deposition of graphene, upon which the poly(pyrrole)-layer was electropolymerised. The highly capacitive electrode had a specific capacitance of 1510 F g(-1), area capacitance of 151 mF cm(-2) and volume capacitance of 151 F cm(-3) at 10 mV s(-1).
In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g −1 and 26 mF cm −2 , while activated carbon/doped PEDOT yielded capacitances of 1183 F g −1 and 42 mF cm −2 at 10 mV s −1. This is more than five times the storage capacity previously reported for activated carbon-PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.
In this paper, we report on the electrochemical characteristics of graphene-PEDOT composite electrodes. The electrodes were made of indium tin oxide (ITO) substrates by simple processes of electrophoretic deposition of graphene followed by electropolymerization of EDOT monomer. The composite electrode was obtained by electrochemical measurements, a median specific capacitance of 1410 F/g and a median area capacitance of 199 mF cm −2 at a scan rate of 40 mVs −1. The composite showed good stability characteristics after repeated scans in cyclic voltammmetry and fared much better than a thin film of PEDOT. The thermal stability of the composite is also much superior when compared to the polymer with a weight loss temperature of 350 • C for the composite and 250 • C for the polymer, respectively. The above electrochemical and thermal behaviours of the composite are correlated to the unique morphology of electrodeposited graphene that provides a conductive and high surface area template for electropolymerization. Keywords. Composite materials; polymers; electrochemical techniques; electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.