Current pharmacotherapeutics for neuropathic pain offer only symptomatic relief without treating the underlying pathophysiology. Additionally, they are associated with various dose-limiting side effects. Pain research in the past few decades has revolved around the role of oxidative-nitrosative stress, protein kinases, glial cell activation, and inflammatory signaling cascades but has failed to produce specific and effective therapies. Areas covered: This review focuses on recent advances in cellular and molecular mechanisms of neuropathic pain that may be translated into future therapies. We discuss emerging targets such as WNT signaling mechanisms, the tetrahydrobiopterin pathway, Mrg receptors, endogenous lipid mediators, micro-RNAs and their roles in pain regulation. Recent evidence is also presented regarding genetic and epigenetic mechanisms of pain modulation. Expert opinion: During chronic neuropathic pain, maladaptation occurs in the peripheral and central nervous systems, including a shift in microglial phenotype from a surveillance state to an activated state. Microglial activation leads to an altered expression of cell surface proteins, growth factors, and intracellular signaling molecules that contribute to development of a neuroinflammatory cascade and chronic pain sensitization. Specific targeting of these cellular and molecular mechanisms may provide the key to development of effective neuropathic pain therapies that have minimal side effects.
Kinesins are one of the neoteric and efficacious targets recently reported to play an important role in the initiation and progression of chronic pain. Kinesins are anterograde microtubule-based motor proteins that are involved in trafficking of receptors including nociceptors and progression of pain. The specific kinesin and regulatory proteins interplay is crucial for the delivery of nociceptors to the synapse. If this complex and less understood interplay is inhibited, it may result in a decrease in central sensitization, and thus attenuation of pain. This review is focused on the transportation process of receptors/cargos, the role of regulatory proteins influencing the respective kinesin, and their relationship with chronic pain. The review also features specific strategies adopted by researchers for targeting kinesin and chronic pain. Considering the recent preclinical success of kinesin inhibition in pain, it is expected that inhibitors for kinesin or enzymes responsible for kinesin activation could be developed or repurposed as alternative, safe, and potential therapies for the treatment of chronic pain.
Kinesins are the motor proteins that transport excitatory receptors to the synaptic membrane by forming a complex with receptor cargo leading to central sensitization causing neuropathic pain. Many regulatory proteins govern the transit of receptors by activating kinesin, and Aurora kinases are one of them. In this study, we have performed in silico molecular dynamics simulation to delineate the dynamic interaction of Aurora kinase A with its pharmacological inhibitor, tozasertib. The results from the molecular dynamics study shows that tozasertib-Aurora kinase A complex is stabilized through hydrogen bonding, polar interactions, and water bridges. Findings from the in vitro studies suggest that tozasertib treatment significantly attenuates lipopolysaccharide (LPS)-induced increase in oxidonitrosative stress and kif11 overexpression in C6 glial cell lines. Further, we investigated the regulation of kif11 and its modulation by tozasertib in an animal model of neuropathic pain. Two weeks post-CCI surgery we observed a significant increase in pain hypersensitivity and kif11 overexpression in DRG and spinal cord of nerve-injured rats. Tozasertib treatment significantly attenuates enhanced pain hypersensitivity along with the restoration of kif11 expression in DRG and spinal cord and oxidonitrosative stress in the sciatic nerve of injured rats. Our findings demonstrate the potential role of tozasertib for the management of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.