“Crypto ransomware is defined as malware that blocks the user file’s access by encrypting them and demands them with a ransom for obtaining the decryption key”. This causes some major threats in many of the companies. Therefore, the detection of ransomware is needful for reducing the workloads of the analysts and also for finding the variations in unknown samples. The adopted scheme encompasses 3 phases: (i) feature extraction, (ii) feature selection and (iii) classification. Initially, the sequential frequent patterns are extracted using the apriori framework. However, the major challenge in this extracted sequential pattern is the curse of dimensionality. To overcome this, the selection of optimal features is very important, which is done as the second stage. In this, the optimization concept is evolved for the optimal selection of these extracted sequential patterns. Furthermore, the optimal patterns are given for classification, where DBN is deployed. Particularly, for the selection of the optimal sequential pattern, this work proposes a new crow search with adaptive awareness probability (CS-AAP) model. In the end, analysis is performed to authorize the supremacy of the developed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.