The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.
In this letter we experimentally implement a single photon Bell test based on the ideas of S. Tan et al. [Phys. Rev. Lett., 66, 252 (1991)] and L. Hardy [Phys. Rev. Lett., 73, 2279(1994]. A double heterodyne measurement is used to measure correlations in the Fock space spanned by zero and one photons. Local oscillators used in the correlation measurement are distributed to two observers by co-propagating it in an orthogonal polarization mode. This method eliminates the need for interferometrical stability in the setup, consequently making it a robust and scalable method.
Coherent magnons and phonons are excited by subpicosecond laser pulses in the weak ferromagnet FeBO 3 . Impulsive stimulated Raman scattering ͑ISRS͒ is proven to be the microscopic mechanism of the excitation. It is shown that coherent magnons can be excited by both linearly and circularly polarized laser pulses where the efficiency of the process depends on the mutual orientation of the magnetic and crystallographic axes and the light propagation direction. The strong ellipticity of the ferromagnetic magnon mode is demonstrated, both experimentally and theoretically, to be essential for the excitation and observation of such coherent magnons. Because of this ellipticity, the amplitude of the coherent magnons excited by linearly polarized light may exceed by 2 orders of magnitude the amplitude of those excited by circularly polarized light. The primary difference between the excitation of coherent magnons by linearly polarized pulses via ISRS and via the earlier reported process of photoinduced magnetic anisotropy is discussed. Furthermore, the ISRS process is found to be responsible for the excitation of two optical phonon branches ͑8.4 and 12.1 THz͒ observed in our experiments. A coherent excitation, with a temperature-independent frequency of 0.7 THz, has also been observed in the magnetically ordered phase but could not be assigned to any optical phonon modes known in FeBO 3 . The well-pronounced dependence of the amplitude of this mode on temperature suggests that this mode of nonmagnetic origin becomes Raman active only in the magnetically ordered phase and, therefore, can be excited and observed only below the Néel temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.