Today, various structural and non-structural solutions are used to control and reduce the negative effects of floods in investigation and executive projects. But what is certain is that the optimal solution to minimize flood damage is a combination of structural and non-structural methods (planning and response measures). It is essential to provide these solutions in a metropolis like Tehran because the hydrographic network of Tehran runoff is sometimes incomplete during floods and is accompanied by severe flooding. Therefore, in this study, a combination of the mentioned methods were used for a part of Tehran's Mianroud canal (as one of the most important surface water management facilities in the catchment area of west Tehran) called Ariafar Boulevard Bridge. For this purpose, in the first step, severe accident hotspots along the route were investigated and then the capacity of passing on accident-prone routes was evaluated according to hydrological information under different scenarios (discharges with return periods of 5, 10, 25 and 100 -years). The results show the adequacy of channel capacity for a 10-year return period. But for the 25, 50 and 100-year discharge, we will face 8.88%, 28.93% and 50.81% capacity shortages, respectively. In the second step, considering the structural solutions, the methods of eliminating the capacity shortage of bottlenecks, including correcting the route, installing auxiliary routes, or destroying bridges that prevented the transfer of runoff in the canal route were carefully examined. The results showed that the combined use of structural and non-structural methods increases the effectiveness and significantly reduces the risk of flood spreading in the city.
Familiarity with storm water management and how to assess damage and deal with it to minimize and control it is very important in urban management systems. There are several methods for flood control that are considered depending on the hydraulic conditions. The use of main canals for surface water collection, flow diversion, catchment management, etc. are among the methods considered by urban designers. Meanwhile, the use of various softwares such as SSA, HEC-RAS and the use of engineering tools such as GIS in its environment has attracted the attention of many researchers. In this paper, the hydraulic studies of Mianroud canal in the area of District 5 of Tehran Municipality, which is one of the important surface drainage arteries of Tehran, have been considered with the help of mathematical model for flood risk zoning. Vulnerable areas have been identified and finally management strategies to control and reduce flood risks have been discussed according to the river regime and the conditions of the region. The results of the Mianroud canal crossing capacity at the intersection with the existing bridges show that the canal built at the site of the sixth bridge is unquestionably incapable of passing floods with a return period of ten years. The canal will be able to pass the 25-year-old flood only at the location of the second and seventh bridges and will overflow at the location of the other bridges. In the 50 and 100 year return periods, the canal will almost lose its function and will flood the surrounding areas with 100% fullness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.