By searching the IRAS and ISO databases, we compiled a list of 60 debris disks that exhibit the highest fractional luminosity values (f d > 10 À4) in the vicinity of the Sun (d < 120 pc). Eleven out of these 60 systems are new discoveries. Special care was taken to exclude bogus disks from the sample. We computed the fractional luminosity values using available IRAS, ISO, and Spitzer data and analyzed the Galactic space velocities of the objects. The results revealed that stars with disks of high fractional luminosity often belong to young stellar kinematic groups, providing an opportunity to obtain improved age estimates for these systems. We found that practically all disks with f d > 5 ; 10 À4 are younger than 100 Myr. The distribution of the disks in the fractional luminosity versus age diagram indicates that (1) the number of old systems with high f d is lower than was claimed before, (2) there exist many relatively young disks of moderate fractional luminosity, and (3) comparing the observations with a current theoretical model of debris disk evolution, a general good agreement could be found.
In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10 −7 to a few 10 −4 M⊙ yr −1 , and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve each individual outburst is studied in increasing detail. We summarize key observations of pre-main sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources -all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near-and long-term.
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we report on the detection of 12 CO and 13 CO in the J=2-1 and J=3-2 transitions and C 18 O in the J=2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r in < 26 AU, r out = 138 ± 20 AU, M * = 1.8 +0.5 −0.2 M ⊙ , and i = 32. • 6 ± 3. • 1. The total CO mass, as calculated from the optically thin C 18 O line, is about (4-8)×10 −2 M ⊕ , while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from the ALMA continuum observations by Moór et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not co-located, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not co-located. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.