In this article, a new class of real-valued Euler–Lagrange symmetry additive functional equations is introduced. The solution of the equation is provided, assuming the unknown function to be continuous and without any regularity conditions. The objective of this research is to derive the Hyers–Ulam–Rassias stability (HURS) in intuitionistic fuzzy normed spaces (IFNS) by applying the classical direct method and fixed point techniques (FPT). Furthermore, it is proven that the Euler–Lagrange symmetry additive functional equation and the control function, which is the IFNS of the sums and products of powers of norms, is stable. In addition, a few examples where the solution of this equation can be applied in Fourier series and Fourier transforms are demonstrated.
In this article, a new kind of bilateral symmetric additive type functional equation is introduced. One of the interesting characteristics of the equation is the fact that it is ideal for investigating the Ulam–Hyers stabilities in two prominent normed spaces, namely fuzzy and random normed spaces simultaneously. This article analyzes the proposed equation in both spaces. The solution of this equation exhibits the property of symmetry, that is, the left of the object becomes the right of the image, and vice versa. Additionally, the stability results of this functional equation are determined in fuzzy and random normed spaces using direct and fixed point methods.
Over the last few decades, a certain interesting class of functional equations were developed while obtaining the generating functions of many system distributions. This class of equations has numerous applications in many modern disciplines such as wireless networks and communications. The Ulam stability theorem can be applied to numerous functional equations in investigating the stability when approximated in Banach spaces, Banach algebra, and so on. The main focus of this study is to analyse the relationship between functional equations, Hyers–Ulam–Rassias stability, Banach space, quasi-beta normed spaces, and fixed-point theory in depth. The significance of this work is the incorporation of the stability of the generalised additive functional equation in Banach space and quasi-beta normed spaces by employing concrete techniques like direct and fixed-point theory methods. They are powerful tools for narrowing down the mathematical models that describe a wide range of events. Some classes of functional equations, in particular, have lately emerged from a variety of applications, such as Fourier transforms and the Laplace transforms. This study uses linear transformation to explain our functional equations while providing suitable examples.
In this paper, the authors introduce two new classes of series type additive functional Equations (FEs). The first class of equations is derived from the sum of the squares of the alternative series and the second one is obtained from the sum of the cubes of the series. The solution of the FE is investigated using the principle of mathematical induction. The beauty of this method lies in the fact that it satisfies the property of the additive FE as well as the series. Banach spaces are one of the widely-used spaces that are very helpful to analyse the stability results of various FEs. The Banach space conditions have been applied and the stability results are established for both of the equations. Furthermore, the Banach Contraction principle and alternative of fixed point theorem are used to derive the stability results in a fixed point technique (FPT). The relationship between the FEs and both the series is established through the principle of mathematical induction in the Application section, which adds novelty to the derived results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.