Computed tomography (CT) images are an essential factor in the diagnosing procedure for various diseases affecting the internal organs. Edge detection can be used for the appropriate enhancement of the lung CT scan images for the diagnosis of the various interstitial lung diseases (ILD). In order to solve the issues of edge detection provided by the traditional Sobel operator, the paper proposes a Sobel 12D edge detection algorithm which uses the additional direction templates for the better identification of the edge details. First, the vertical and horizontal directions available in the traditional Sobel operator are extended to few more directions (a total of 12 directions) which enhances the edge extraction ability. Next part, compute the edge detected image using the Sobel 12D, Laplace, Prewitt, Robert’s Cross and Scharr operators for edge detection separately. It is followed by image fusion method which optimizes the edge detection by combining the edge detected images obtained using the Sobel 12D approach and the Laplace operator. The experimental results shows that the proposed algorithms generates a better detection of the edges than the other edge detection operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.