Hydrogen can be a good alternative to fossil fuels under the conditions of world's crisis as an effective energy carrier derived from renewable resources. Among all the known methods of hydrogen production, water electrolysis gives the ecologically purest hydrogen, so it is of importance to maximize the efficiency of this process. The authors consider the influence of plasma sprayed Ni-Al protective coating of 316L steel anode-cathode electrodes in DC electrolysis. In a long-term (24 h) process the anode corrodes strongly, losing Cr and Ni ions which are transferred to the electrolyte, while only minor corrosion of the cathode occurs. At the same time, the composition of anode and cathode electrodes protected by Ni-Al coating changes only slightly during a prolonged electrolysis. As the voltammetry and Tafel plots evidence, the Ni-Al coating protects both the anode and cathode from the corrosion and reduces the potential of hydrogen evolution. The results obtained show that such a coating works best in the case of steel electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.