A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.
A new series of macrobicyclic ditopic receptors is derived from the precursor compound 3,4:10,11-dibenzo-1,13[N,N 0 -bis{(3-formyl-2-hydroxy-5-methyl)-benzyl}di-aza]-5,9-dioxocyclohexadecane. Using this precursor, mono-and binuclear nickel(II) complexes of type [NiL](ClO 4 ) and [Ni 2 L](ClO 4 ) 2 have been synthesized to undertake electrochemical and catalytic studies on the basis of macrocyclic ring size. The receptor is a tricompartmental macrocycle consisting of ether oxygen, tertiary nitrogen and imine nitrogen atoms. The redox studies of these systems show that the nickel(II) complexes undergo quasi-reversible oneelectron reduction and oxidation. All the nickel(II) complexes have square planar geometry and are EPR silent. Examination of the kinetics of the hydrolysis of 4-nitrophenyl phosphate shows that the catalytic activities of the complexes increase with the macrocyclic ring size of the complexes. As the macrocyclic ring size of the complexes increases, the spectral, electrochemical and catalytic studies of the complexes show considerable variation due to distortion in the geometry around the nickel(II) centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.