This paper presents the use of subassembly models instead of the entire assembly model to predict assembly quality defects at an automotive original equipment manufacturer (OEM). Specifically, artificial neural networks (ANNs) were used to predict assembly time and market value from assembly models. These models were converted into bipartite graphs from which 29 graph complexity metrics were extracted to train 18,900 ANN prediction models. The size of the training set, order of the bipartite graph, selection of training set, and defect type were experimentally studied. With a training size of 28 parts, an interpolation focused training set selection with a second-order graph seeding ensured that 70% of all predictions were within 100% of the target value. The study shows that with an increase in training size and careful selection of training sets, assembly defects can be predicted reliably from subassemblies' complexity data.
Artificial Neural Networks (ANNs) have been used to predict assembly time and market value from assembly models. This was done by converting the assembly models into bipartite graphs and extracting 29 graph complexity metrics which were used to train the ANN prediction models. This paper presents the use of sub-assembly models instead of the entire assembly model to predict assembly quality defects at an automotive OEM. The size of the training set, order of the bipartite graph, selection of training set, and defect type were experimentally studied. With a training size of 28 parts, an interpolation focused training set selection, and second order graph seeding, over 70% of the predictions were within 100% of the target value. The study shows that with an increase in training size and careful selection of training sets, assembly defects can be predicted reliably from sub-assemblies complexity data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.