Aim Effective conservation of the endangered tiger depends upon reliable knowledge of factors driving genetic differentiation and population connectivity. Connectivity models frequently use resistance surfaces not optimized with actual movement or genetic data which limits reliability. Our aim is to use empirical data on genetic diversity of tiger populations to optimize landscape resistance to gene flow and identify factors that predict local population abundance across Central India. Location The study area covers 697,000 km2 across Madhya Pradesh and parts of Rajasthan, Jharkhand and Maharashtra. Methods We used genetic data of 309 tigers and restricted multivariate optimization of correlation between landscape variables and genetic distance in a reciprocal causal modelling framework to parameterize a resistance surface for gene flow. We further evaluated the association between effective population size and landscape connectivity using all‐subsets logistic regression with model averaging based on AICc. Results Gene flow is primarily related to topographic roughness and slope position and secondarily to human footprint and land cover. It is much higher in areas of rough topography and ridge tops and is facilitated by forest cover in areas with low human footprint. In contrast, effective population size in protected areas is primarily driven by extent of protected areas and surrounding forest cover, and is not significantly related to resistant kernel connectivity value. Main Conclusions This is the first study to use a rigorous multivariate optimization approach to identify factors which limit gene flow of tigers. Tiger movement is highly affected by landscape features, and dispersing tigers move through rough terrain along forested ridges, avoiding non‐forest areas with high human footprint, while local tiger population density is driven primarily by the extent of protected forested habitat. These results have important implications for tiger conservation and can be used to develop empirically supported prioritization of core areas and corridors.
BackgroundMajority of the tiger habitat in Indian subcontinent lies within high human density landscapes and is highly sensitive to surrounding pressures. These forests are unable to sustain healthy tiger populations within a tiger-hostile matrix, despite considerable conservation efforts. Ranthambore Tiger Reserve (RTR) in Northwest India is one such isolated forest which is rapidly losing its links with other tiger territories in the Central Indian landscape. Non-invasive genetic sampling for individual identification is a potent technique to understand the relationships between threatened tiger populations in degraded habitats. This study is an attempt to establish tiger movement across a fragmented landscape between RTR and its neighboring forests, Kuno-Palpur Wildlife Sanctuary (KPWLS) and Madhav National Park (MNP) based on non-invasively obtained genetic data.MethodsData from twelve microsatellite loci was used to define population structure and also to identify first generation migrants and admixed individuals in the above forests.ResultsPopulation structure was consistent with the Central Indian landscape and we could determine significant gene flow between RTR and MNP. We could identify individuals of admixed ancestry in both these forests, as well as first generation migrants from RTR to KPWLS and MNP.ConclusionsOur results indicate reproductive mixing between animals of RTR and MNP in the recent past and migration of animals even today, despite fragmentation and poaching risk, from RTR towards MNP. Substantial conservation efforts should be made to maintain connectivity between these two subpopulations and also higher protection status should be conferred on Madhav National Park.
BackgroundNon-invasively collected samples allow a variety of genetic studies on endangered and elusive species. However due to low amplification success and high genotyping error rates fewer samples can be identified up to the individual level. Number of PCRs needed to obtain reliable genotypes also noticeably increase.MethodsWe developed a quantitative PCR assay to measure and grade amplifiable nuclear DNA in feline faecal extracts. We determined DNA degradation in experimentally aged faecal samples and tested a suite of pre-PCR protocols to considerably improve DNA retrieval.ResultsAverage DNA concentrations of Grade I, II and III extracts were 982pg/µl, 9.5pg/µl and 0.4pg/µl respectively. Nearly 10% of extracts had no amplifiable DNA. Microsatellite PCR success and allelic dropout rates were 92% and 1.5% in Grade I, 79% and 5% in Grade II, and 54% and 16% in Grade III respectively. Our results on experimentally aged faecal samples showed that ageing has a significant effect on quantity and quality of amplifiable DNA (p<0.001). Maximum DNA degradation occurs within 3 days of exposure to direct sunlight. DNA concentrations of Day 1 samples stored by ethanol and silica methods for a month varied significantly from fresh Day 1 extracts (p<0.1 and p<0.001). This difference was not significant when samples were preserved by two-step method (p>0.05). DNA concentrations of fresh tiger and leopard faecal extracts without addition of carrier RNA were 816.5pg/µl (±115.5) and 690.1pg/µl (±207.1), while concentrations with addition of carrier RNA were 49414.5pg/µl (±9370.6) and 20982.7pg/µl (±6835.8) respectively.ConclusionsOur results indicate that carnivore faecal samples should be collected as freshly as possible, are better preserved by two-step method and should be extracted with addition of carrier RNA. We recommend quantification of template DNA as this facilitates several downstream protocols.
BackgroundTiger populations are dwindling rapidly making it increasingly difficult to study their dispersal and mating behaviour in the wild, more so tiger being a secretive and solitary carnivore.MethodsWe used non-invasively obtained genetic data to establish the presence of 28 tigers, 22 females and 6 males, within the core area of Pench tiger reserve, Madhya Pradesh. This data was evaluated along with spatial autocorrelation and relatedness analyses to understand patterns of dispersal and philopatry in tigers within this well-managed and healthy tiger habitat in India.ResultsWe established male-biased dispersal and female philopatry in tigers and reiterated this finding with multiple analyses. Females show positive correlation up to 7 kms (which corresponds to an area of approximately 160 km2) however this correlation is significantly positive only upto 4 kms, or 50 km2 (r = 0.129, p<0.0125). Males do not exhibit any significant correlation in any of the distance classes within the forest (upto 300 km2). We also show evidence of female dispersal upto 26 kms in this landscape.ConclusionsAnimal movements are important for fitness, reproductive success, genetic diversity and gene exchange among populations. In light of the current endangered status of tigers in the world, this study will help us understand tiger behavior and movement. Our findings also have important implications for better management of habitats and interconnecting corridors to save this charismatic species.
Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.