The enormous growth in internet usage has led to the development of different malicious software posing serious threats to computer security. The various computational activities carried out over the network have huge chances to be tampered and manipulated and this necessitates the emergence of efficient intrusion detection systems. The network attacks are also dynamic in nature, something which increases the importance of developing appropriate models for classification and predictions. Machine learning (ML) and deep learning algorithms have been prevalent choices in the analysis of intrusion detection systems (IDS) datasets. The issues pertaining to quality and quality of data and the handling of high dimensional data is managed by the use of nature inspired algorithms. The present study uses a NSL-KDD and KDD Cup 99 dataset collected from the Kaggle repository. The dataset was cleansed using the min-max normalization technique and passed through the 1-N encoding method for achieving homogeneity. A spider monkey optimization (SMO) algorithm was used for dimensionality reduction and the reduced dataset was fed into a deep neural network (DNN). The SMO based DNN model generated classification results with 99.4% and 92% accuracy, 99.5%and 92.7% of precision, 99.5% and 92.8% of recall and 99.6%and 92.7% of F1-score, utilizing minimal training time. The model was further compared with principal component analysis (PCA)-based DNN and the classical DNN models, wherein the results justified the advantage of implementing the proposed model over other approaches.
Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments. This advancement improved flexibility, scalability, needed fewer cables, reduced the network installation and commissioning time, increased productivity, and reduced maintenance costs compared to wired networks. On the other hand, using IWSNs for process control comes with the critical challenge of handling stochastic network delays, packet drop, and external noises which are capable of degrading the controller performance. Thus, this paper presents a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements.
This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.
In most of the industrial process plants, PI/PID controllers have been widely used because of its simple design, easy tuning, and operational advantages. However, the performance of these controllers degrades for the processes with long dead-time and variation in set-point. Up next, a PPI controller is designed based on the Smith predictor to handle dead-time processes by compensation technique, but it failed to achieve adequate performance in the presence of external noise, large disturbances, and higher-order systems. Furthermore, the model-based controllers structure is complex in nature and requires the exact model of the process with more tunable parameters. Therefore, in this research, a fractional-order predictive PI controller has been proposed for dead-time processes with added filtering abilities. The controller uses the dead-time compensation characteristics of the Smith predictor and the fractional-order controller's robustness nature. For the high peak overshoot, external noise, and disturbance problems, a new set-point and noise filtering technique is proposed, and later it is compared with different conventional methods. In servo and regulatory operations, the proposed controller and filtering techniques produced optimal performance. Multiple real-time industrial process models are simulated with long dead-time to evaluate the proposed technique's flexibility, set-point tracking, disturbance rejection, signal smoothing, and deadtime compensation capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.