The results of a study of the beta decays of three proton-rich nuclei with Tz = -2, namely 48 Fe, 52 Ni and 56 Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total β-delayed proton emission branching ratios. We have measured the individual β-delayed protons and β-delayed γ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between β-delayed protons and γ rays is observed in the de-excitation of the T = 2 Isobaric Analogue States in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case 56 Zn, where the exotic β-delayed γ-proton decay has been observed.
The recently confirmed neutron-shell closure at N=32 has been investigated for the first time below the magic proton number Z=20 with mass measurements of the exotic isotopes (52,53)K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N=32, slightly lower than for 52Ca, highlighting the doubly magic nature of this nuclide. Skyrme-Hartree-Fock-Bogoliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.
We report the observation of a very exotic decay mode at the proton drip line, the β-delayed γ-proton decay, clearly seen in the β decay of the T_{z}=-2 nucleus ^{56}Zn. Three γ-proton sequences have been observed after the β decay. Here this decay mode, already observed in the sd shell, is seen for the first time in the fp shell. Both γ and proton decays have been taken into account in the estimation of the Fermi and Gamow-Teller strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.
In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from 67 Kr. At the same time, no evidence for 2p emission of 59 Ge and 63 Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to 67 Kr as being the best new candidate among the three for two-proton radioactivity. 67 Kr is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of 67 Kr is 7.4(30) ms. DOI: 10.1103/PhysRevLett.117.162501 Close to the valley of β stability, nuclear β decay, which is often associated with γ-ray emission, is the only decay mode possible. When moving closer to the limits of stability in both directions, the available decay energy, the Q value, increases at the same time as the binding energy of the excess particle decreases. Therefore, emission of β-delayed particles (protons, neutrons, or α particles) becomes more and more likely. Close to the proton drip line, β-delayed one-, two-, and (in particular recently) three-proton emission has been observed [1][2][3][4][5][6].In all these cases, the excess protons are still sufficiently bound that direct particle emission is not possible.However, when moving further away from the line of stability, the protons are no longer bound by the strong nuclear force and the proton drip line is crossed. For slightly negative proton separation energies S p or S 2p , β þ decay can still compete with direct one-or two-proton emission; however, with separation energies typically below −1 MeV, one-and two-proton emission dominates for odd-and even-Z elements, respectively. We underline here that for 2p radioactivity, the one-proton separation energy has to be positive.For odd-proton-number (odd-Z) elements, one-proton radioactivity is a well-established decay mode and is PRL 117,
Masses adjacent to the classical waiting-point nuclide ^{130}Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N=82 shell gap below the doubly magic ^{132}Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A=128-132 region and a reduction of the uncertainties from the precision mass input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.