Individual plants varied considerably, but peach and apricot were more sensitive to waterlogging than was plum. No differences were established between peach and apricot. All 3 species became more sensitive as temperature was increased between 17 and 27°C. More than half of the plum seedlings survived at 17°C whereas all plants of the other 2 species died. A scion of a more tolerant species did not overcome the sensitivity of the roots.
Both cyanogenic glycoside content and the proportion of it that was hydrolyzed during waterlogging were higher in peach than in plum roots. Exposure of detached root systems of all 3 species to anaerobic conditions caused HCN to be released. The rate of cyanogenesis increased with both temperature and time. Peach and apricot roots were alike in HCN evolution whereas plum roots were lower, with release of HCN being barely detectable at 22°C. Cyanogenesis was significant in peach and apricot at as low as 17°C.
A close association exists among differential sensitivity, glycoside hydrolysis, and cyanogenesis in the absence of O2. However, the latter may be secondary, though contributory, to cellular disorganization as a cause of sensitivity.
The role of pollen in abscission of pistillate flowers of Persian walnut (Juglans regia L.) cv. Serr was investigated over a 4-year period by controlled pollinations and pollen counts. Self-pollen, pollen from other walnut selections or cultivars, or dead pollen was applied at high and low doses to pistillate flowers enclosed in pollination bags. Unbagged, open-pollinated flowers and bagged, nonpollinated flowers served as controls. In all cases, presence of pollen significantly increased the probability of pistillate flower abscission (PFA). Dead pollen resulted in as much PFA as live pollen. Counts of pollen grains confirmed that PFA-type flowers had significantly more pollen than normal flowers. In the fourth year `Serr' pollen was applied to unbagged flowers of `Serr' and ten other Persian walnut cultivars, and the amount of PFA on the artificially pollinated flowers was significantly higher than on the open-pollinated flowers, while the control flowers dusted with talc or pine pollen had almost no PFA. These results clearly indicate that excess pollen is involved in pistillate flower abscission in `Serr' walnut and suggests that other cultivars may also be sensitive to pollen load. This phenomenon may have implications in the biology of selfing and evolution.
Seedlings of Juglans hindsii Jeps. and J. regia L. reacted similarly and were much more sensitive to waterlogging at root temperatures of 33°C than those of Pterocarya stenoptera DC. At 23°C,J. regia expressed symptoms of waterlogging earlier than J. hindsii. Paradox plants, hybrids between the 2 walnut species, were more tolerant than J. hindsii but are still considered highly sensitive to anaerobiosis. These results support the contention that use of J. regia seedlings as rootstocks to avoid blackline introduces greater potential for damage if soils become saturated. Some plants of each type which demonstrated increased tolerance have been selected. Levels of abscisic acid, or changes therein did not appear to be useful parameters in screening walnut seedlings for tolerance to waterlogging. Phenolic compounds decreased in roots of waterlogged plants. Although the magnitude of change in phenols was the same in Juglans and Pterocarya plants, it occurred over a much longer period with the latter. Phenols lost from roots may be a secondary phenomenon but contribute to hypersensitivity of Juglans to waterlogging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.