Natural gas hydrate is ice‐like mixture of gas (mostly methane) and water that is widely found in sediments along the world's continental margins and within and beneath permafrost and glaciers in a near‐surface depth interval where the pressure is sufficiently high and temperature sufficiently low for gas hydrate to be stable. We categorize the myriad of geological gas hydrate deposits into five characteristic types. We then review the multiple quantitative models that have proposed to describe the genesis of these deposits and describe how each may have formed. We emphasize the importance of coupling multiphase flow (free gas and liquid water) and multicomponent reactive transport with geological history to describe the dynamical processes of gas hydrate formation and evolution in geological systems. A better insight into the kinetics of methane formation from microbial biogenesis and the processes of multiphase flow at the pore scale will advance our knowledge of how these systems form. By understanding the generation and evolution of gas hydrate through time, we will better decipher the role of gas hydrate in the carbon cycle, its potential to contribute to climate change and geohazards, and how to design optimal strategies for gas production from hydrate reservoirs.
Focused gas migration through the gas hydrate stability zone in vertical gas conduits is a global phenomenon. The process can lead to concentrated gas hydrate formation and seafloor gas seepage, which influences seafloor biodiversity and ocean biogeochemistry. However, much is unknown about how gas and gas hydrate co‐exist within and around gas conduits. We present seismic imaging of the gas hydrate system beneath a four‐way closure anticlinal ridge at New Zealand's southern Hikurangi subduction margin. Gas has accumulated beneath the base of gas hydrate stability to a thickness of up to ∼240 m, which has ultimately led to hydraulic fracturing and propagation of a vertical gas conduit to the seafloor. Despite the existence of an array of normal faults beneath the ridge, these structures are not exploited as long‐range gas flow conduits. Directly beneath the conduit, and extending upward from the regional base of gas hydrate stability, is a broad zone characterized by both negative‐ and positive‐polarity reflections. We interpret this zone as a volume of sediment hosting both gas hydrate and free gas, that developed due to partial gas trapping beneath a mass transport deposit. Similar highly reflective zones have been identified at the bases of other gas conduits, but they are not intrinsic to all gas conduits through gas hydrate systems. We suggest that pronounced intervening sealing units within the gas hydrate stability zone determine whether or not they form.
We predict pressure and stress from porosity in the Nankai accretionary prism with a critical state soil model that describes porosity as a function of mean stress and maximum shear stress, and assumes Coulomb failure within the wedge and uniaxial burial beneath it. At Ocean Drilling Program Sites 1174 and 808, we find that pore pressure in the prism supports 70% to 90% of the overburden (λu = 0.7 to 0.9), for a range of assumed friction angles (5–30°). The prism pore pressure is equal to or greater than that in the underthrust sediments even though the porosity is lower within the prism. The high pore pressures lead to a mechanically weak wedge that supports low maximum shear stress, and this in turn requires very low basal traction to remain consistent with the observed narrowly tapered wedge geometry. We estimate the décollement friction coefficient (μb) to be ~0.08–0.38 (ϕb′ = 4.6°–21°). Our approach defines a pathway to predict pressure in a wide range of environments from readily observed quantities (e.g., porosity and seismic velocity). Pressure and stress control the form of the Earth's collisional continental margins and play a key role in its greatest earthquakes. However, heretofore, there has been no systematic approach to relate material state (e.g., porosity), pore pressure, and stress in these systems.
The flow of gas through shallow marine sediments is an important component of the global carbon cycle and affects methane release to the ocean and atmosphere as well as submarine slope stability. Seafloor methane venting is often linked to dissociating hydrates or gas migration from a deep source, and subsurface evidence of gas‐driven tensile fracturing is abundant. However, the physical links among hydrate dissociation, gas flow, and fracturing have not been rigorously investigated. We used mercury intrusion data to model the capillary drainage curves of shallow marine muds as a function of clay content and porosity. We combined these with estimates of in situ tensile strength to determine the critical gas saturation at which the pressure of the gas phase would exceed the pressure required to generate tensile fractures. Our work showed that fracturing is favored in the shallowest 38 m of sediment when the clay‐sized fraction is 0.2, but fracturing may be possible to a depth of 132 m below seafloor (mbsf) with a clay‐sized fraction of 0.5 and to a depth of nearly 500 mbsf with a clay‐sized fraction of 0.7. Dissociating hydrate may supply sufficient quantities of gas to cause fracturing, but this is only likely near the updip limit of the hydrate stability zone. Gas‐driven tensile fracturing is probably a common occurrence in the upper 10–20 mbsf regardless of clay‐sized fraction, does not require much gas (far less than 10% gas saturation), and is not necessarily an indication of hydrate dissociation.
We explored methane hydrate formation with sedimentation with a newly developed one‐dimensional, multiphase flow, multicomponent transport numerical model. Our model couples methane hydrate formation from in situ microbial methane generation within the hydrate stability zone (HSZ), methane recycling, and microbial methane generation below the base of the hydrate stability zone (BHSZ). Both recycled methane and deeply generated methane are transported into the HSZ by buoyancy‐driven free gas flow. Free gas flows through the HSZ by both the processes of capillary‐dependent pore fillings and by salt exclusion during hydrate formation, with the former being the dominant mechanism. We quantitively illustrated the formation of enriched hydrate in muddy sediments above, and interconnected free gas below, the BHSZ, which are common features along the world's continental margin. In addition, we showed two ways to form concentrated methane hydrate above the BHSZ. The first mechanism is local free gas flow during methane recycling. This happens at sites with sufficient methane generation above the BHSZ. The second mechanism is deep microbial methane generation which is transported into the HSZ by free gas flow. This mechanism plays a more important role at sites with high sedimentation rates. This study provides new insights into methane hydrate formation and distribution below the seafloor. It is important for understanding the carbon cycle and carbon storage below the seafloor and for resource evaluation and exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.