Brines are preferred to solids-laden fluids for completion operations due to their solids-free nature, which helps preserve formation permeability. Salt selection is mostly driven by the density that must be reached to match downhole pressure requirements. When density must be above 14.2 lbm/gal (1.7 s.g.), and crystallization must be prevented, previous options were limited to calcium bromide brines, zinc bromide brines and cesium formate. These brines have severe limitations: zinc brines can be harmful to oilfield personnel and the environment, cesium formate brines are cost-prohibitive and not readily available and calcium brines cannot meet deepwater crystallization requirements. A new brine technology has been developed, that is zinc-free and extends the density of conventional bromide brines beyond their theoretical limits. This new technology addresses the limitations listed above, while providing low True Crystallization Temperature (TCT) and Pressurized Crystallization Temperature (PCT) to perform in deepwater and cold weather applications. This paper summarizes the completion fluid properties, laboratory qualification and verification, and summarizes recent successful field applications of the new high-density zinc-free brine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.