Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We also investigated whether the antihyperglycemic agent stevioside was able to counteract these effects of palmitate. Clonal alpha-TC1-6 cells were cultured with palmitate in the presence or absence of stevioside. After 72 h, we evaluated glucagon secretion, glucagon content, triglyceride (TG) content, and changes in gene expression. Glucagon secretion was dose-dependently increased after 72-h culture, with palmitate at concentrations >or=0.25 mM (P< 0.05). Palmitate (0.5 mM) enhanced TG content of alpha-cells by 73% (P< 0.01). Interestingly, stevioside (10(-8) and 10(-6) M) reduced palmitate-stimulated glucagon release by 22 and 45%, respectively (P< 0.01). There was no significant change in glucagon content after 72-h culture with palmitate and/or stevioside. Palmitate increased carnitine palmitoyltransferase I (CPT I) mRNA level, whereas stevioside enhanced CPT I, peroxisome proliferator-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (P<0.05). In conclusion, long-term exposure to elevated fatty acids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes.
Long-term exposure to leucine induces hypersecretion of glucagon secretion, that is, aminoacidotoxicity and influences some key genes of pancreatic α-cells. Interestingly, GLP-1 counteracts the leucine-induced α-cell dysfunction.
In summary, high concentrations of palmitate and glucose cause a relative increase in glucagon secretion, a decline in insulin secretion, a loss of alpha cell sensitivity to glucose and an accumulation of TG. The inability of insulin to suppress glucagon may be because of insulin resistance of alpha cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.