SUMMARYThis paper presents a fast multipole boundary element method (BEM) for the analysis of two-dimensional elastoplastic problems. An incremental iterative technique based on the initial strain approach is employed to solve the nonlinear equations, and the fast multipole method (FMM) is introduced to achieve higher runtime and memory storage efficiency. Both of the boundary integrals and domain integrals are calculated by recursive operations on a quad-tree structure without explicitly forming the coefficient matrix. Combining multipole expansions with local expansions, computational complexity and memory requirement of the matrix-vector multiplication are both reduced to O(N ), where N is the number of degrees of freedom (DOFs). The accuracy and efficiency of the proposed scheme are demonstrated by several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.