An emissive probe has been used in the edge region of the CASTOR tokamak in order to test the possibility of direct measurements of the plasma potential. The difference between the floating potential of a cold probe and that of an emissive probe has been found to be approximately 1.3 times the electron temperature, which is less than predicted by the probe theory. Several possible reasons to explain this discrepancy are offered, such as secondary electron emission, uncertainties in the ion temperature, different collecting areas for electrons and ions, etc. The possible impact of a space charge formed by the emitted electrons is also discussed.
A novel probe and approach to the direct measurements of the plasma potential in a strong magnetic field is suggested. The principle of this method is to reduce the electron saturation current to the same magnitude as that of the ion saturation current. In this case, the floating potential of the probe becomes identical to the plasma potential. This goal is attained by a shield, which screens off an adjustable part of the electron current from the probe collector due to the much smaller gyro-radius of the electrons. First systematic measurements have been performed in the CASTOR tokamak.PACS : 52.70.Ds
Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.
A novel approach to the direct measurement of the plasma potential in magnetized plasmas, using the so-called "ball-pen probe", was recently tested in the CASTOR tokamak. Comparison with the standard technique of plasma potential measurement using the emissive probe is reported. It is found that the plasma potential determined by the emissive probe is systematically lower than that measured by the ball-pen probe. The difference is of the order of kTe/e. A possible reason of this difference is the space charge occurring in the proximity of the emissive probe.PACS : 52.70.Ds
A probe array consisting of three emissive probes and one cold cylindrical probe was developed for edge plasma measurements in ISTTOK. Emissive probes are particularly suitable for turbulence studies as they are able to deliver a more accurate measure of the plasma potential by reducing the effect of temperature fluctuations. The probe array has the advantage of recording the density, the electric field and their fluctuations simultaneously. Radial plasma profiles were recorded with and without negative edge biasing by an emissive electrode. The statistical properties of the poloidal electric field and of the turbulent particle flux, measured with cold and emissive probes, were compared. Both the root mean square of the poloidal electric field and the fluctuation-induced particle flux were found to be significantly larger when measured with the emissive probes, indicating that temperature fluctuations are important for the measurement of the particle flux. The probability distribution of the particle flux was also found to be more peaked and asymmetric when measured with the emissive probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.