We have identified pentabromopseudilin (PBP) as a potent inhibitor of myosin-dependent processes such as isometric tension development and unloaded shortening velocity. PBP-induced reductions in the rate constants for ATP binding, ATP hydrolysis and ADP dissociation extend the time required per myosin ATPase cycle in the absence and presence of actin. Additionally, coupling between the actin and nucleotide binding sites is reduced in the presence of the inhibitor. The selectivity of PBP differs from that observed with other myosin inhibitors. To elucidate the binding mode of PBP, we crystallized the Dictyostelium myosin-2 motor domain in the presence of Mg(2+)-ADP-meta-vanadate and PBP. The electron density for PBP is unambiguous and shows PBP to bind at a previously unknown allosteric site near the tip of the 50-kDa domain, at a distance of 16 A from the nucleotide binding site and 7.5 A away from the blebbistatin binding pocket.
2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined with kinetic studies of point mutants and the previously published structure of the apo form of OAS1, the new data suggest a sequential mechanism of OAS activation and show the individual roles of each component. They reveal a dsRNA-mediated push-pull effect responsible for large conformational changes in OAS1, the catalytic role of the active site Mg(2+), and the structural basis for the 2'-specificity of product formation. Our data reveal similarities and differences in the activation mechanisms of members of the OAS/cyclic GMP-AMP synthase family of innate immune sensors. In particular, they show how helix 3103-α5 blocks the synthesis of cyclic dinucleotides by OAS1.
UDP-glucose pyrophosphorylase (UGP) is a nucleotidyltransferase of central importance in all organisms and considered an attractive drug target in the human pathogens Leishmania and Trypanosoma. Here, we used wild-type and mutant Leishmania major UGP to solve the crystal structures of postreactive, UTP, and UDP-Glc bound states and performed kinetic and theoretical chemistry analysis of the enzymatic reaction. The new data filled critical gaps in the knowledge of the UGP mechanism and allowed reconstructing the complete enzymatic cycle on three levels: global (movements of molecular functional blocks), local (behavior of separate residues), and chemical (quantum mechanical description of enzymatic reaction). Results were integrated into a model of UGP activity describing structural changes along the cycle, the mechanisms of substrate binding, UGP catalysis, and product release. Our study revealed the mechanisms of allosteric regulation common for nucleotidyltransferases and, in particular, the mechanical control of the chemical reaction in the active site.
In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.
Sulphotransferases are a diverse group of enzymes catalysing the transfer of a sulfuryl group from 3′-phosphoadenosine 5′-phosphosulphate (PAPS) to a broad range of secondary metabolites. They exist in all kingdoms of life. In Arabidopsis thaliana (L.) Heynh. twenty-two sulphotransferase (SOT) isoforms were identified. Three of those are involved in glucosinolate (Gl) biosynthesis, glycosylated sulphur-containing aldoximes containing chemically different side chains, whose break-down products are involved in stress response against herbivores, pathogens, and abiotic stress. To explain the differences in substrate specificity of desulpho (ds)-Gl SOTs and to understand the reaction mechanism of plant SOTs, we determined the first high-resolution crystal structure of the plant ds-Gl SOT AtSOT18 in complex with 3′-phosphoadenosine 5′-phosphate (PAP) alone and together with the Gl sinigrin. These new structural insights into the determination of substrate specificity were complemented by mutagenesis studies. The structure of AtSOT18 invigorates the similarity between plant and mammalian sulphotransferases, which illustrates the evolutionary conservation of this multifunctional enzyme family. We identified the essential residues for substrate binding and catalysis and demonstrated that the catalytic mechanism is conserved between human and plant enzymes. Our study indicates that the loop-gating mechanism is likely to be a source of the substrate specificity in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.