Spinel ZnAl2O4 nano-catalysts were synthesized by a simple, economical and eco-friendly microwave irradiation (MIM) and conventional heating methods (CHM), using metal nitrates and Okra (Abelmoschus esculentus) plant extract, which play a dual role of both oxidizing and reducing nature. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) and selected area electron diffraction (SAED) pattern results were confirmed that the samples have a single-phase cubic spinel structure with high crystalline nature of ZnAl2O4. Surface morphology of the samples was revealed by high resolution scanning electron microscopy (HR-SEM) and high resolution transmission electron microscopy (HR-TEM) techniques and they are confirmed particle-like structure with grain size below 50 nm. The optical band gap (Eg) was measured using Kubelka-Munk model by UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) and the Eg value is higher for MIM product than CHM, due to the smaller particle size of ZnAl2O4-MIM. The magnetic property of the samples was determined by vibrating sample magnetometer (VSM) and showed a superparamagnetic behavior. Spinel ZnAl2O4 nano-catalysts are magnetically recyclable and could be reused with no significant loss in catalytic activity. Both the samples were successfully tested as catalysts for the conversion of alcohols into respective carbonyl compounds using H2O2 (as oxidant) and acetonitrile (as a solvent) system. It was found that the ZnAl2O4-MIM nanocatalysts show best performance of conversion of alcohols into a carbonyl compounds than that of ZnAl2O4-CHM, due to the smaller particle size and higher surface area of ZnAl2O4-MIM samples.
The Indian monsoon carries large amounts of freshwater to the northern Indian Ocean and modulates the upper ocean structure in terms of upwelling and productivity. Freshwater‐induced stratification in the upper ocean of the Bay of Bengal is linked to the changes in the Indian monsoon. In this study, we test the usefulness of δ18O and δ13C variability records for Globigerina bulloides and Orbulina universa to infer Indian monsoon variability from a sediment core retrieved from the southwestern Bay of Bengal encompassing the last 46 kyr record. Results show that the northeast monsoon was dominant during the Last Glacial Maximum. Remarkable signatures are observed in the δ18O and δ13C records during the Marine Isotope Stage (MIS) 3 to MIS‐1. Our study suggests that Indian monsoon variability is controlled by a complex of factors such as solar insolation, North Atlantic climatic shifts, and coupled ocean–atmospheric variability during the last 46 kyr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.