Improving the performance of heat transfer fluids is altogether significant. The best approach for improving the thermal conductivity is the addition of nanoparticles to the base fluid. In the present study, specific heat, dynamic viscosity, and thermal conductivity of water-based Indian coal fly ash stable nanofluid for 0.1% to 0.5% volume concentration in the temperature range of 30 to 60掳C has been investigated. To evaluate an average particle diameter of 11.5 nm, the fly ash nanoparticles were characterized with scanning electron microscopy and dynamic light scattering. Using zeta potential, the stability of nanofluid in the presence of surfactant Triton X-100 was tested. Thermal conductivity and viscosity of fly ash nanofluid increased, while specific heat decreased as volume concentration increased. The effect of temperature on the fly ash nanofluid was directly proportional to its thermal conductivity and specific heat and inversely proportional to viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.