This article describes the algorithmic principles used to generate LAI, fAPAR and fCover estimates from VEGETATION observations. These biophysical variables are produced globally at 10 days temporal sampling interval under lat-lon projection at 1/112°spatial resolution. After a brief description of the VEGETATION sensors, radiometric calibration process, based on vicarious desertic targets is first presented. The cloud screening algorithm was then fine tuned using a global network of cloudiness observations. Atmospheric correction is then achieved using the SMAC code with inputs coming from meteorological values of pressure, ozone and water vapour. Aerosol optical thickness is derived from MODIS climatology assuming continental aerosol type. The Roujean BRDF model is then adjusted for red, near infrared and short wave infrared bands used to the remaining cloud free observations collected over a time window of ± 15 days. Outliers due to possible cloud contamination or residual atmospheric correction are iteratively eliminated and prior information is used to get more robust estimates of the three BRDF kernel coefficients. Nadir viewing top of canopy reflectance in the three bands is input to the biophysical algorithm to compute the products at 10 days sampling interval. This algorithm is based on training neural networks over SAIL + PROPSPECT radiative transfer model simulations for each biophysical variable. Details on the way the training data base was generated and the neural network designed and calibrated are presented. Finally, theoretical performances are discussed. Validation over ground measurement data sets and inter-comparison with other similar biophysical products are presented and discussed in a companion paper. The CYCLOPES products and associated detailed documentation are available at
International audienceThe GlobCover project has developed a service dedicated to the generation of multiyear global land cover maps at 300-m spatial resolution using as its main source of data the full-resolution full-swath (300 m) data (FRS) acquired by the MERIS sensor on-board the ENVISAT satellite. As multiple single daily orbits have to be combined in one single data set, an accurate relative and absolute geolocation of GlobCover orthorectified products is required and needs to be assessed. We describe in this paper the main steps of the orthorectification pre-processing chain as well as the validation methodology and geometric performance assessments. Final results are very satisfactory with an absolute geolocation error of 77-m rms and a relative geolocation error of 51-m rms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.