International audienceThe dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl2 and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.