Atrazine is classified as a restricted use pesticide and it is currently included in an international revision program for re-evaluating the human and ecological (non-human populations) health risks associated with its release into the environment. The present study was undertaken to add new data on the genotoxic potential of atrazine using the Allium cepa chromosome aberration test. The test concentrations were based on the Maximum Contaminant Levels in water intended for human consumption set by European and US regulations. Atrazine produced a concentration-related increase in the number of total somatic chromosome aberrations, although this increase was statistically significant (p<0.05) only at the highest test concentration (5 microg/L). Analysis of the categories of structural chromosome damage indicated that breaks were the predominant lesion induced; the percent of cells per bulb with breaks also increased in a concentration-related manner, and the increase was statistically significant at the two highest test concentrations (1 and 5 microg/L) (p<0.05). The Allium cepa plant assay detected the clastogenicity of atrazine at concentrations that are likely to be encountered in water, a common site of atrazine contamination.
The aim of this study was to ascertain the possible toxicological effects of chemicals released into mineral water packaged in polyethylene terephthalate (PET) bottles. Two commercial mineral waters, bottled both in PET and glass and stored under different conditions, were examined using the Allium cepa test. The influence of the water samples on macroscopic (root length, colour and form) and microscopic (root tip mitotic index, chromosome aberrations) parameters was examined. The water samples were analysed after: (A) controlled-condition storage (no direct light exposure and 18 +/- 2 degrees C), (B) storage at 40 degrees C for 10 days, in the dark (migration test in accordance with 82/711/EEC), and (C) exposure to sunlight and varying temperatures (18-38 degrees C, mean temperature 25 +/- 3 degrees C). The two water samples bottled in PET induced cytogenetic aberrations regardless of the storage conditions. These signs of toxicity were evident even only 8 weeks after bottling, which is well within the recommended expiry date. Storage conditions were very important, as is suggested by the finding that chromosomal aberrations were particularly apparent after exposure to direct sunlight. However, as plant systems are not considered as primary screening tools by current international guidelines for mammalian systems, extrapolation of the results from this test system to other systems and, eventually, to human beings should be based on results from a battery of assays covering various metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.