Confinement in TCV electron cyclotron heated discharges was studied as a function of plasma shape, i.e. as a function of elongation, 1.1 < κ < 2.15, and triangularity, −0.65 ≤ δ ≤ 0.55. The electron energy confinement time was found to increase with elongation, owing in part to the increase of plasma current with elongation. The beneficial effect of negative triangularities was most effective at low power and tended to decrease at the higher powers used. The large variety of sawtooth types observed in TCV for different power deposition locations, from on-axis to the q = 1 region, was simulated with a model that included local power deposition, a growing m/n = 1 island (convection and reconnection), plasma rotation and finite heat diffusivity across flux surfaces. Furthermore, a model with local magnetic shear reproduced the experimental observation that the sawtooth period is at a maximum when the heating is close to the q = 1 surface.
A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0. 5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.
Fully noninductive, steady-state electron cyclotron current drive (ECCD) has been demonstrated for the first time in experiments carried out in the tokamak à configuration variable (TCV) [O. Sauter et al., Phys. Rev. Lett. 84, 3322 (2000)]. By appropriately distributing six 0.45 MW ECCD sources over the discharge cross section, fully noninductive, stable, and stationary plasmas with Ip up to 210 kA were obtained for the full discharge duration of 1.9 s, corresponding to more than 900 energy confinement times and more than 10 current redistribution times at an average current drive efficiency η20CD=0.01[1020 A W−1 m−2]. These experiments have also demonstrated for the first time the steady recharging of the ohmic transformer using ECCD only. The effect of localized off-axis electron cyclotron heating (ECH) and EC current drive (ECCD) (co- and counter-) is investigated showing that locally driven currents amounting to only 1% of Ip significantly alter sawtooth periods and crash amplitudes. An improved quasi-stationary core confinement regime, with little or no sawtooth activity, has been obtained by a combination of off-axis ECH and on-axis CNTR–ECCD.
The Tokamak à Configuration Variable (TCV) tokamak (R = 0.88 m, a < 0.25 m, B < 1.54 T) programme is based on flexible plasma shaping and heating for studies of confinement, transport, control and power exhaust. Recent advances in fully sustained off-axis electron cyclotron current drive (ECCD) scenarios have allowed the creation of plasmas with high bootstrap fraction, steady-state reversed central shear and an electron internal transport barrier. High elongation plasmas, κ = 2.5, are produced at low normalized current using far off-axis electron cyclotron heating and ECCD to broaden the current profile. Third harmonic heating is used to heat the plasma centre where the second harmonic is in cut-off. Both second and third harmonic heating are used to heat H-mode plasmas, at the edge and centre, respectively. The ELM frequency is decreased by the additional power. In separate experiments, the ELM frequency can be affected by locking to an external perturbation current in the internal coils of TCV. Spatially resolved current profiles are measured at the inner and outer divertor targets by Langmuir probe arrays during ELMs. The strong, reasonably balanced currents are thought to be thermoelectric in origin.
Sawtooth inversion radii and profile peaking factors of a large variety of ohmic and ECH heated L mode plasmas, including elongations up to 2.6 and triangularities between −0.5 and 0.75, have been investigated in the TCV tokamak. In ohmic plasmas, normalized inversion radii and electron temperature profile peaking factors (corrected for sawtoothing effects) depend solely on the parameter j /q 0 j 0 , irrespective of plasma shape. With ECH this parameter remains the main scaling parameter. Density profiles are well described as functions of poloidal flux, in agreement with turbulent equipartition theories. Parameter conversions are also provided that allow the observed scalings to be expressed using the conventional scaling variables q 95 , δ 95 and κ 95 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.