Parametric scalings of the intrinsic (spontaneous, with no external momentum input) toroidal rotation observed on a large number of tokamaks have been combined with an eye towards revealing the underlying mechanism(s) and extrapolation to future devices. The intrinsic rotation velocity has been found to increase with plasma stored energy or pressure in JET, Alcator C-Mod, Tore Supra, DIII-D, JT-60U and TCV, and to decrease with increasing plasma current in some of these cases. Use of dimensionless parameters has led to a roughly unified scaling with MA ∝ βN, although a variety of Mach numbers works fairly well; scalings of the intrinsic rotation velocity with normalized gyro-radius or collisionality show no correlation. Whether this suggests the predominant role of MHD phenomena such as ballooning transport over turbulent processes in driving the rotation remains an open question. For an ITER discharge with βN = 2.6, an intrinsic rotation Alfven Mach number of MA ≃ 0.02 may be expected from the above deduced scaling, possibly high enough to stabilize resistive wall modes without external momentum input.
Bulk plasma toroidal rotation is observed to invert spontaneously from counter to cocurrent direction in TCV (Tokamak à Configuration Variable) Ohmically heated discharges, in low confinement mode, without momentum input. The inversion occurs in high current discharges, when the plasma electron density exceeds a well-defined threshold. The transition between the two rotational regimes has been studied by means of density ramps. The results provide evidence of a change of the balance of nondiffusive momentum fluxes in the core of a plasma without an external drive.
The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of −0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated.
The effect of plasma shape on confinement has been experimentally explored in the TCV tokamak revealing that the core electron heat transport is significantly reduced by a negative triangularity configuration, which could indicate a (partial) stabilization of the microinstabilities at play in a conventional positive triangularity configuration.This work is a theoretical investigation of the effect exerted by triangularity on plasma turbulence. In particular, it compares the TCV experimental results with non-linear local gyrokinetic simulations performed on the basis of actual MHD equilibrium reconstructions.In both the linear and non-linear phases, negative triangularity is found to have a stabilizing influence on ion-scale instabilities, specifically on the so-called trapped electron mode (TEM) which is the dominant instability in the conditions of the TCV experiments considered; more specifically, the variation of the heat flux with triangularity calculated by the non-linear simulations is in fair agreement with the experimental results.The resulting stabilization is a result of a rather complex modification of the toroidal precessional drift of trapped particles exerted by negative triangularity.
Predicting intrinsic plasma rotation and its shear, which often help stabilize plasma instabilities affecting plasma performance, is important for prospective fusion grade devices. Although rotation in ITER-like scenarios has been extrapolated from measured experimental plasma rotation data, little is understood about the underlying mechanisms governing either the generation or dissipation of momentum in a tokamak plasma. This paper reports on studies of intrinsic toroidal and poloidal plasma rotation from charge exchange spectroscopy using a low power diagnostic beam on the TCV tokamak [Tonetti et al., in Proceedings of the Symposium on Fusion Technology (1991), p. 587] that drives negligible toroidal velocity. In TCV, plasma behavior can be separated by the core and edge regions. In limited configurations, the core rotates in the counter-current direction and can reverse to the co-current direction with a <10% increase in the plasma density. This is different for diverted configurations where the core rotates in the co-current direction reversing to the counter-current direction at higher plasma densities. For all these situations, core toroidal momentum is strongly transported by plasma sawteeth oscillations. In contrast, the toroidal edge rotation is close to stationary for limited discharges but evolves with plasma density for diverted configurations. Theoretical models that predict a change in momentum transport from turbulence have previously been suggested to provide a mechanism that might explain these phenomena. In this paper, mode activity that changes at the toroidal velocity reversal, is identified as a new possible candidate. In the absence of an available model that can explain these basic phenomena, this paper presents observations and, where possible, scaling of the rotation profiles with some of the major plasma parameters such as current, density and shape to guide the development of a physics model for use in improving the extrapolation of the rotation amplitude and profiles to future devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.