We prove that the von Kármán model for vibrating beams can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth-order dispersive operator is added. We also show that the energy of solutions for this modified Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k, when suitable damping terms are added. As k → ∞, one deduces the uniform exponential decay of the energy of the von Kármán model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.