Calibration is a necessary step in the workflow for prediction of fault seal because there is no direct way to detect the hydraulic behaviour of a fault at the scale of a hydrocarbon trap. Over the last 20 years two general approaches have been developed:
Measurement of hydraulic properties of fault-zone samples (lab calibration), then mapping these results onto the appropriate parts of trap-bounding faults.Design of simple algorithms which attempt to capture a salient feature of the fault zone (e.g. CSP, SSF, SGR), then looking at known trap-bounding faults to find a relationship between the algorithm and the presence or capacity of a seal (sub-surface calibration).Seal capacity is typically described by Hg–air threshold pressure in the lab or static pressure differences in the subsurface (e.g. hydrocarbon buoyancy pressure). In addition to likely interpretation and geometry errors in approaches (i) and (ii), further uncertainty is introduced when converting the calibrated seal strength to potential hydrocarbon column height, because of the variability of subsurface hydrocarbon fluids (interfacial tension). Despite these potential problems, the different methodologies typically agree reasonably well in their predictions for fault-seal capacity. However, this agreement may be largely coincidental and is likely to be a response to the heterogeneity of fault-zone structure (especially at intermediate ‘compositions’ or SGR).
A fault array in South Australia, interpreted from a 3D onshore seismic survey, shows fault traces on the lowermost mapped horizon of a shale‐dominated sequence which outline polygonal cells averaging 1.4 km in diameter. The cell boundaries coincide approximately with the downward terminations and near convergence of conjugate pairs of normal faults. The pattern becomes less spatially ordered on higher horizons where faults still show a near‐isotropic strike distribution. Maximum throws,
c.
80 m, occur
c.
400 m above the downward terminations of the faults. The faults have a systematic geometric relationship with folds, with anticlines in the mutual hanging walls of fault pairs and broader footwall synclines that define the shallow dish forms of the polygons. Polygon boundaries coincide with anticlinal ridges on the interface between the faulted sequence and an underlying 35 m thick low velocity, low density, overpressured layer. Although the pattern of ridges defining the polygon boundaries is strikingly similar to experimental spoke and hub patterns formed at the boundaries between viscous materials with density inversion, the data do not exclude the possibility of lateral extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.